Daily Trading of the FTSE Index Using LSTM with Principal Component Analysis

被引:0
|
作者
Edelman, David [1 ]
Mannion, David [1 ]
机构
[1] Univ Coll Dublin, Carysft Campus, Blackrock, County Dublin, Ireland
关键词
Deep learning; Recurrent networks; Time series; Ensembling;
D O I
10.1007/978-3-030-99638-3_37
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study comprises a preliminary investigation into the use of Long Short-Term Memory (LSTM) methodology when used in conjunction with Principal Component Analysis (PCA) for producing trading signals for daily returns of the the FTSE100 index. The model is trained on approximately 35 years of daily data and validated on six months of testing data, demonstrating a high degree of risk-adjusted trading efficacy.
引用
收藏
页码:228 / 234
页数:7
相关论文
共 50 条
  • [41] Enhanced coherence using principal component analysis
    Liu, Zhining
    Song, Chengyun
    Cai, Hanpeng
    Yao, Xingmiao
    Hu, Guangmin
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2017, 5 (03): : T351 - T359
  • [42] Principal component analysis using QR decomposition
    Alok Sharma
    Kuldip K. Paliwal
    Seiya Imoto
    Satoru Miyano
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 679 - 683
  • [43] Reionization constraints using principal component analysis
    Mitra, Sourav
    Choudhury, T. Roy
    Ferrara, Andrea
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 413 (03) : 1569 - 1580
  • [44] Principal component analysis using neural network
    Yang, Jian-Gang
    Sun, Bin-Qiang
    Journal of Zhejinag University: Science, 2002, 3 (03): : 298 - 304
  • [45] Spectrum Sensing using Principal Component Analysis
    Bhatti, Farrukh Aziz
    Rowe, Gerard B.
    Sowerby, Kevin W.
    2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2012,
  • [46] Classification of Wines Using Principal Component Analysis
    Barth, Jackson
    Katumullage, Duwani
    Yang, Chenyu
    Cao, Jing
    JOURNAL OF WINE ECONOMICS, 2021, 16 (01) : 56 - 67
  • [47] Penalized principal component analysis using smoothing
    Rebecca Hurwitz
    Georg Hahn
    Statistics and Computing, 2025, 35 (3)
  • [48] Principal component analysis using LISREL 8
    Department of Developmental Psychology, Psychology Faculty, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, Netherlands
    Struct. Equ. Model., 4 (307-322):
  • [49] Wind forecasting using Principal Component Analysis
    Skittides, Christina
    Frueh, Wolf-Gerrit
    RENEWABLE ENERGY, 2014, 69 : 365 - 374
  • [50] Intrusion detection using principal component analysis
    Bouzida, Y
    Gombault, S
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IX, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: II, 2003, : 98 - 103