On-the-fly training of polynomial machine learning potentials in computing lattice thermal conductivity

被引:3
|
作者
Togo, Atsushi [1 ]
Seko, Atsuto [2 ]
机构
[1] Natl Inst Mat Sci, Ctr Basic Res Mat, Tsukuba, Ibaraki 3050047, Japan
[2] Kyoto Univ, Dept Mat Sci & Engn, Sakyo, Kyoto 6068501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 21期
关键词
BOLTZMANN TRANSPORT-EQUATION; INTERATOMIC FORCE-CONSTANTS; SOLVER;
D O I
10.1063/5.0211296
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of first-principles calculations for predicting lattice thermal conductivity (LTC) in crystalline materials, in conjunction with the linearized phonon Boltzmann equation, has gained increasing popularity. In this calculation, the determination of force constants through first-principles calculations is critical for accurate LTC predictions. For material exploration, performing first-principles LTC calculations in a high-throughput manner is now expected, although it requires significant computational resources. To reduce computational demands, we integrated polynomial machine learning potentials on-the-fly during the first-principles LTC calculations. This paper presents a systematic approach to first-principles LTC calculations. We designed and optimized an efficient workflow that integrates multiple modular software packages. We applied this approach to calculate LTCs for 103 compounds of wurtzite, zinc blende, and rocksalt types to evaluate the performance of the polynomial machine learning potentials in LTC calculations. We demonstrate a significant reduction in the computational resources required for the LTC predictions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Investigation of phase transition, mechanical behavior and lattice thermal conductivity of halogen perovskites using machine learning interatomic potentials
    Shi, Yongbo
    Chen, Yuanyuan
    Dong, Haikuan
    Wang, Hao
    Qian, Ping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (44) : 30644 - 30655
  • [22] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
    胡锦龙
    左钰婷
    郝昱州
    舒国钰
    王洋
    冯敏轩
    李雪洁
    王晓莹
    孙军
    丁向东
    高志斌
    朱桂妹
    李保文
    ChinesePhysicsB, 2023, 32 (04) : 26 - 33
  • [23] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
    Hu, Jinlong
    Zuo, Yuting
    Hao, Yuzhou
    Shu, Guoyu
    Wang, Yang
    Feng, Minxuan
    Li, Xuejie
    Wang, Xiaoying
    Sun, Jun
    Ding, Xiangdong
    Gao, Zhibin
    Zhu, Guimei
    Li, Baowen
    CHINESE PHYSICS B, 2023, 32 (04)
  • [24] ColumnML: Column-Store Machine Learning with On-The-Fly Data Transformation
    Kara, Kaan
    Eguro, Ken
    Zhang, Ce
    Alonso, Gustavo
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 12 (04): : 348 - 361
  • [25] Evaluating approaches for on-the-fly machine learning interatomic potentials for activated mechanisms sampling with the activation-relaxation technique nouveau
    Sanscartier, Eugene
    Saint-Denis, Felix
    Bolduc, Karl-Etienne
    Mousseau, Normand
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (24):
  • [26] On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations
    Jinnouchi, Ryosuke
    Miwa, Kazutoshi
    Karsai, Ferenc
    Kresse, Georg
    Asahi, Ryoji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (17): : 6946 - 6955
  • [27] Machine Learning for On-the-Fly Reliability-Aware Cell Library Characterization
    Klemme, Florian
    Amrouch, Hussam
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (06) : 2569 - 2579
  • [28] On-the-fly machine learning force field generation: Application to melting points
    Jinnouchi, Ryosuke
    Karsai, Ferenc
    Kresse, Georg
    PHYSICAL REVIEW B, 2019, 100 (01)
  • [29] Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces
    Li, Zhenwei
    Kermode, James R.
    De Vita, Alessandro
    PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [30] Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures
    Mortazavi, Bohayra
    Podryabinkin, Evgeny, V
    Roche, Stephan
    Rabczuk, Timon
    Zhuang, Xiaoying
    Shapeev, Alexander, V
    MATERIALS HORIZONS, 2020, 7 (09) : 2359 - 2367