Magnetism in the two-dimensional dipolar XY model

被引:2
|
作者
Sbierski, Bjoern [1 ,2 ,3 ]
Bintz, Marcus [4 ]
Chatterjee, Shubhayu [5 ,6 ]
Schuler, Michael [7 ]
Yao, Norman Y. [4 ,6 ,8 ]
Pollet, Lode [1 ,2 ,3 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[3] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[6] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[7] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[8] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
QUANTUM; PROPAGATION; MOLECULES;
D O I
10.1103/PhysRevB.109.144411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by a recent experiment on a square-lattice Rydberg atom array realizing a long-range dipolar properties. We obtain the phase diagram, critical properties, entropies, variance of the magnetization, and site-resolved correlation functions. We consider both ferromagnetic and antiferromagnetic interactions and apply quantum Monte Carlo and pseudo-Majorana functional renormalization group techniques, generalizing the latter to a U (1) symmetric setting. Our simulations perform extensive thermometry in dipolar Rydberg atom arrays and establish conditions for adiabaticity and thermodynamic equilibrium. On the ferromagnetic side of the experiment, we determine the entropy per particle S/N approximate to 0.5, close to the one at the critical temperature, Sc/N = 0.585(15). The simulations suggest the presence of an out-of-equilibrium plateau at large distances in the correlation function, thus motivating future studies on the nonequilibrium dynamics of the system.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Quantum criticality in the two-dimensional dissipative quantum XY model
    Zhu, Lijun
    Hou, Changtao
    Varma, Chandra M.
    PHYSICAL REVIEW B, 2016, 94 (23)
  • [42] DYNAMICAL PHASE-TRANSITIONS IN THE TWO-DIMENSIONAL XY MODEL
    GOLINELLI, O
    DERRIDA, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (19): : L939 - L945
  • [43] Comment on 'Phase transition of a two-dimensional generalized XY model'
    van Enter, Aernout C. D.
    Romano, Silvano
    Zagrebnov, Valentin A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
  • [44] SPIN-CORRELATION FUNCTION IN THE TWO-DIMENSIONAL XY MODEL
    HEINEKAMP, SW
    PELCOVITS, RA
    PHYSICAL REVIEW B, 1985, 32 (07): : 4528 - 4538
  • [45] Quantum Lifshitz criticality in a frustrated two-dimensional XY model
    Kharkov, Yaroslav A.
    Oitmaa, Jaan
    Sushkov, Oleg P.
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [46] Dynamical phase transitions in the disordered two-dimensional XY model
    Liu, CJ
    Hu, JZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1996, 25 (02) : 179 - 182
  • [47] Thermodynamics of the two-dimensional XY model from functional renormalization
    Jakubczyk, P.
    Eberlein, A.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [48] Orientation-position coupling in the two-dimensional XY model
    Xiao, Zhufei
    Huang, Tao
    Zeng, Chunhua
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [49] Dynamical scaling:: The two-dimensional XY model following a quench
    Rojas, F
    Rutenberg, AD
    PHYSICAL REVIEW E, 1999, 60 (01) : 212 - 221
  • [50] Phase diagram for the two-dimensional quantum anisotropic XY model
    Pires, AST
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 260 (03) : 397 - 399