Reinvestigating the performance of artificial intelligence classification algorithms on COVID-19 X-Ray and CT images

被引:0
|
作者
Cao, Rui [1 ]
Liu, Yanan [1 ]
Wen, Xin [1 ]
Liao, Caiqing [1 ]
Wang, Xin [2 ,3 ]
Gao, Yuan [2 ,4 ]
Tan, Tao [2 ,3 ,5 ]
机构
[1] Taiyuan Univ Technol, Sch Software, Taiyuan 030024, Peoples R China
[2] Netherlands Canc Inst NKI, Dept Radiol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[3] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, Geert Grootepl 10, NL-6525 GA Nijmegen, Netherlands
[4] Maastricht Univ, GROW Sch Oncol & Dev Biol, NL-6200 MD Maastricht, Netherlands
[5] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
NETWORK; BIAS;
D O I
10.1016/j.isci.2024.109712
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There are concerns that artificial intelligence (AI) algorithms may create underdiagnosis bias by mislabeling patient individuals with certain attributes (e.g., female and young) as healthy. Addressing this bias is crucial given the urgent need for AI diagnostics facing rapidly spreading infectious diseases like COVID19. We find the prevalent AI diagnostic models show an underdiagnosis rate among specific patient populations, and the underdiagnosis rate is higher in some intersectional specific patient populations (for example, females aged 20-40 years). Additionally, we find training AI models on heterogeneous datasets (positive and negative samples from different datasets) may lead to poor model generalization. The model's classification performance varies significantly across test sets, with the accuracy of the better performance being over 40% higher than that of the poor performance. In conclusion, we developed an AI bias analysis pipeline to help researchers recognize and address biases that impact medical equality and ethics.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Transfer Learning Methods for Classification of COVID-19 Chest X-ray Images
    Singh, Hardit
    Saini, Simarjeet S.
    Lakshminarayanan, Vasudevan
    MULTIMODAL BIOMEDICAL IMAGING XVI, 2021, 11634
  • [22] One-class Classification for Identifying COVID-19 in X-Ray Images
    Eduardo Perez-Careta
    Delia Irazú Hernández-Farías
    José Rafael Guzman-Sepulveda
    Miguel Torres Cisneros
    Teodoro Cordoba-Fraga
    Juan Carlos Martinez Espinoza
    Rafael Guzman-Cabrera
    Programming and Computer Software, 2022, 48 : 235 - 242
  • [23] Fast COVID-19 and Pneumonia Classification Using Chest X-ray Images
    Lujan-Garcia, Juan Eduardo
    Moreno-Ibarra, Marco Antonio
    Villuendas-Rey, Yenny
    Yanez-Marquez, Cornelio
    MATHEMATICS, 2020, 8 (09)
  • [24] An adaptive feature extraction method for classification of Covid-19 X-ray images
    Zeynep Gündoğar
    Furkan Eren
    Signal, Image and Video Processing, 2023, 17 : 899 - 906
  • [25] COVID-19 classification of X-ray images using deep neural networks
    Keidar, Daphna
    Yaron, Daniel
    Goldstein, Elisha
    Shachar, Yair
    Blass, Ayelet
    Charbinsky, Leonid
    Aharony, Israel
    Lifshitz, Liza
    Lumelsky, Dimitri
    Neeman, Ziv
    Mizrachi, Matti
    Hajouj, Majd
    Eizenbach, Nethanel
    Sela, Eyal
    Weiss, Chedva S.
    Levin, Philip
    Benjaminov, Ofer
    Bachar, Gil N.
    Tamir, Shlomit
    Rapson, Yael
    Suhami, Dror
    Atar, Eli
    Dror, Amiel A.
    Bogot, Naama R.
    Grubstein, Ahuva
    Shabshin, Nogah
    Elyada, Yishai M.
    Eldar, Yonina C.
    EUROPEAN RADIOLOGY, 2021, 31 (12) : 9654 - 9663
  • [26] One-class Classification for Identifying COVID-19 in X-Ray Images
    Perez-Careta, Eduardo
    Irazu Hernandez-Farias, Delia
    Rafael Guzman-Sepulveda, Jose
    Torres Cisneros, Miguel
    Cordoba-Fraga, Teodoro
    Martinez Espinoza, Juan Carlos
    Guzman-Cabrera, Rafael
    PROGRAMMING AND COMPUTER SOFTWARE, 2022, 48 (04) : 235 - 242
  • [27] An adaptive feature extraction method for classification of Covid-19 X-ray images
    Gundogar, Zeynep
    Eren, Furkan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 899 - 906
  • [28] Deep Metric Learning for Transparent Classification of Covid-19 X-Ray Images
    Calderaro, Salvatore
    Lo Bosco, Giosue
    Rizzo, Riccardo
    Vella, Filippo
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 300 - 307
  • [29] COVID-19 classification of X-ray images using deep neural networks
    Daphna Keidar
    Daniel Yaron
    Elisha Goldstein
    Yair Shachar
    Ayelet Blass
    Leonid Charbinsky
    Israel Aharony
    Liza Lifshitz
    Dimitri Lumelsky
    Ziv Neeman
    Matti Mizrachi
    Majd Hajouj
    Nethanel Eizenbach
    Eyal Sela
    Chedva S. Weiss
    Philip Levin
    Ofer Benjaminov
    Gil N. Bachar
    Shlomit Tamir
    Yael Rapson
    Dror Suhami
    Eli Atar
    Amiel A. Dror
    Naama R. Bogot
    Ahuva Grubstein
    Nogah Shabshin
    Yishai M. Elyada
    Yonina C. Eldar
    European Radiology, 2021, 31 : 9654 - 9663
  • [30] Deep CNN models for predicting COVID-19 in CT and x-ray images
    Chaddad, Ahmad
    Hassan, Lama
    Desrosiers, Christian
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)