Effect of in-situ generated MgAl2O4 spinel on thermal shock resistance of magnesia-zirconia refractories

被引:4
|
作者
Liu, Zhongfei [1 ]
Liang, Xiaocheng [1 ]
Luo, Xudong [2 ]
Zhao, Jialiang [1 ]
Wu, Feng [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Mat & Met, Anshan 114051, Liaoning, Peoples R China
[2] Liaoning Inst Sci & Technol, Benxi 117000, Liaoning, Peoples R China
关键词
MgAl; 2; O; 4; spinel; Magnesia-zirconia refractories; Thermal shock resistance; Micropores; CORROSION MECHANISMS; CHROME REFRACTORIES; BEHAVIOR; COMPOSITE; TEMPERATURE; PERFORMANCE; OXIDE; ZRO2; SLAG;
D O I
10.1016/j.ceramint.2024.06.404
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study aims to advance the application of magnesia-zirconia (MgO-ZrO2) refractories in non-ferrous metal smelting furnaces by enhancing their thermal shock resistance. To fabricate MgO-ZrO2-MgAl2O4 refractories, tabular corundum particles and activated alpha-Al2O3 powder are integrated into MgO-ZrO2 refractories. The analysis of thermal shock resistance, phase composition, and microstructure of the samples was conducted to gain insights into the toughening mechanisms. The results reveal a substantial enhancement in thermal shock resistance with the addition of 15 wt% tabular corundum (1-0.5 mm) and activated alpha-Al2O3. Compared to samples without these additives, a notable increase of over 50.0 % in the ratio of residual cold modulus of rupture is shown. The enhancement in thermal shock resistance is primarily attributed to the in-situ generated MgAl2O4 spinel. This process involves volume expansion and increased thermal expansion mismatch, which induce microcrack toughening. Additionally, larger tabular corundum particles form in-situ MgAl2O4 spinel, causing crack deflection and branching, thus extending the crack propagation pathway. Furthermore, the presence of micropores in the spinel zone absorbs the energy required for crack propagation, thereby improving toughness and thermal shock resistance. Consequently, the MgO-ZrO2-MgAl2O4 refractories containing in-situ MgAl2O4 spinel with micropores are promising candidate for chrome-free refractories used in non-ferrous metal smelting furnaces.
引用
收藏
页码:35936 / 35945
页数:10
相关论文
共 50 条
  • [31] Unusual Pressure Effect on the Shear Modulus in MgAl2O4 Spinel
    Zou, Yongtao
    Greaux, Steeve
    Irifune, Tetsuo
    Li, Baosheng
    Higo, Yuji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (46): : 24518 - 24526
  • [32] Mechanochemical effect on synthesis and sintering behavior of MgAl2O4 spinel
    Peddarasi, Surendra
    Sarkar, Debasish
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 262
  • [33] In-situ processing and aging behaviors of MgAl2O4 spinel whisker reinforced 6061Al composite
    Zhou, Yang
    Zhao, Naiqin
    Shi, Chunsheng
    Liu, Enzuo
    Du, Xiwen
    He, Chunnian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 598 : 114 - 121
  • [34] CHEMICAL METHOD FOR PREPARING MGAL2O4 SPINEL
    MITCHELL, PW
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1972, 55 (09) : 484 - &
  • [35] Phonon anharmonicity in disordered MgAl2O4 spinel
    Thibaudeau, P
    Debernardi, A
    Phuoc, VT
    da Rocha, S
    Gervais, F
    PHYSICAL REVIEW B, 2006, 73 (06):
  • [36] COPRECIPITATES YIELDING MGAL2O4 SPINEL POWDERS
    BRATTON, RJ
    AMERICAN CERAMIC SOCIETY BULLETIN, 1969, 48 (08): : 759 - &
  • [37] LATTICE-VIBRATIONS OF MGAL2O4 SPINEL
    OHORO, MP
    FRISILLO, AL
    WHITE, WB
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1973, 34 (01) : 23 - 28
  • [38] Dipole defects in MgAl2O4 spinel crystals
    Ayres, F
    De Souza, SS
    Blak, AR
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2001, 156 (1-4): : 305 - 309
  • [39] Modeling the sintering trajectories of MgAl2O4 Spinel
    Kerbart, Gabriel
    Harnois, Christelle
    Marinel, Sylvain
    Maniere, Charles
    SCRIPTA MATERIALIA, 2021, 203
  • [40] New synthesis methods of MgAl2O4 spinel
    Pacurariu, C.
    Lazau, I.
    Ecsedi, Z.
    Lazau, R.
    Barvinschi, P.
    Marginean, G.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) : 707 - 710