An Improved Deep Reinforcement Learning Algorithm for Path Planning in Unmanned Driving

被引:0
|
作者
Yang, Kai [1 ]
Liu, Li [2 ]
机构
[1] Nanjing Normal Univ Special Educ, Sch Math & Informat Sci, Nanjing 210038, Peoples R China
[2] Hainan Univ, Sch Sci, Haikou 570228, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep reinforcement learning; path planning; autonomous driving; deep Q-learning network; UAV;
D O I
10.1109/ACCESS.2024.3400159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the domain of intelligent transportation systems, the advent of autonomous driving technology represents a critical milestone, profoundly shaping the automotive industry's evolutionary path. This technology's core, particularly the algorithms facilitating driverless path planning, has attracted significant scholarly interest. This paper presents an advanced Deep Reinforcement Learning algorithm for Path Planning (DRL-PP), designed to rectify the shortcomings inherent in existing path planning techniques. Considering the complex nature of the environment, the DRL-PP algorithm is meticulously crafted to ascertain optimal actions, thereby effectively reducing the propensity for overfitting. The algorithm harnesses the capabilities of deep reinforcement learning, utilizing neural networks to identify the most advantageous action corresponding to a specific state. It then constructs an optimal action sequence, extending from the vehicle's initial position to its designated target. Additionally, the algorithm enhances the reward function by incorporating data pertinent to the objective. This refinement enables the nuanced differentiation of action values based on dynamically adjusted reward metrics, thereby augmenting the efficiency of the action selection process and yielding improved results in path planning. Empirical results validate the algorithm's proficiency in stabilizing the reward metric while minimizing exploratory steps, consistently surpassing comparative models in path-finding effectiveness.
引用
收藏
页码:67935 / 67944
页数:10
相关论文
共 50 条
  • [41] A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
    Qu, Chengzhi
    Gai, Wendong
    Zhong, Maiying
    Zhang, Jing
    APPLIED SOFT COMPUTING, 2020, 89
  • [42] A LARGE-SCALE PATH PLANNING ALGORITHM FOR UNDERWATER ROBOTS BASED ON DEEP REINFORCEMENT LEARNING
    Wang, Wenhui
    Li, Leqing
    Ye, Fumeng
    Peng, Yumin
    Ma, Yiming
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2024, 39 (03): : 204 - 210
  • [43] Path planning and dynamic collision avoidance algorithm under COLREGs via deep reinforcement learning
    Xu, Xinli
    Cai, Peng
    Ahmed, Zahoor
    Yellapu, Vidya Sagar
    Zhang, Weidong
    NEUROCOMPUTING, 2022, 468 : 181 - 197
  • [44] Deep reinforcement learning for indoor mobile robot path planning
    Gao, Junli
    Ye, Weijie
    Guo, Jing
    Li, Zhongjuan
    Sensors (Switzerland), 2020, 20 (19): : 1 - 15
  • [45] Explainable Deep Reinforcement Learning for UAV autonomous path planning
    He, Lei
    Aouf, Nabil
    Song, Bifeng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 118
  • [46] Research on path planning of robot based on deep reinforcement learning
    Liu, Feng
    Chen, Chang
    Li, Zhihua
    Guan, Zhi-Hong
    Wang, Hua O.
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3730 - 3734
  • [47] A Deep Reinforcement Learning Based Approach for AGVs Path Planning
    Guo, Xinde
    Ren, Zhigang
    Wu, Zongze
    Lai, Jialun
    Zeng, Deyu
    Xie, Shengli
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6833 - 6838
  • [48] Dynamic Path Planning for Mobile Robots with Deep Reinforcement Learning
    Yang, Laiyi
    Bi, Jing
    Yuan, Haitao
    IFAC PAPERSONLINE, 2022, 55 (11): : 19 - 24
  • [49] Grid Path Planning with Deep Reinforcement Learning: Preliminary Results
    Panov, Aleksandr, I
    Yakovlev, Konstantin S.
    Suvorov, Roman
    8TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, BICA 2017 (EIGHTH ANNUAL MEETING OF THE BICA SOCIETY), 2018, 123 : 347 - 353
  • [50] Application of Deep Reinforcement Learning in Mobile Robot Path Planning
    Xin, Jing
    Zhao, Huan
    Liu, Ding
    Li, Minqi
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7112 - 7116