Generalized Cell Type Annotation and Discovery for Single-Cell RNA-Seq Data

被引:0
|
作者
Zhai, Yuyao [1 ]
Chen, Liang [4 ]
Deng, Minghua [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
[3] Peking Univ, Ctr Quantitat Biol, Beijing, Peoples R China
[4] Huawei Technol Co Ltd, Shenzhen, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of single-cell RNA sequencing (scRNA-seq) technology allows us to study gene expression heterogeneity at the cellular level. Cell annotation is the basis for subsequent downstream analysis in single-cell data mining. Existing methods rarely explore the fine-grained semantic knowledge of novel cell types absent from the reference data and usually susceptible to batch effects on the classification of seen cell types. Taking into consideration these limitations, this paper proposes a new and practical task called generalized cell type annotation and discovery for scRNA-seq data. In this task, cells of seen cell types are given class labels, while cells of novel cell types are given cluster labels instead of a unified "unassigned" label. To address this problem, we carefully design a comprehensive evaluation benchmark and propose a novel end-to-end algorithm framework called scGAD. Specifically, scGAD first builds the intrinsic correspondence across the reference and target data by retrieving the geometrically and semantically mutual nearest neighbors as anchor pairs. Then we introduce an anchor-based self-supervised learning module with a connectivity-aware attention mechanism to facilitate model prediction capability on unlabeled target data. To enhance the inter-type separation and intra-type compactness, we further propose a confidential prototypical self-supervised learning module to uncover the consensus category structure of the reference and target data. Extensive results on massive real datasets demonstrate the superiority of scGAD over various state-of-the-art clustering and annotation methods.
引用
收藏
页码:5402 / 5410
页数:9
相关论文
共 50 条
  • [31] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [32] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [33] scPML: pathway-based multi-view learning for cell type annotation from single-cell RNA-seq data
    Du, Zhi-Hua
    Hu, Wei-Lin
    Li, Jian-Qiang
    Shang, Xuequn
    You, Zhu-Hong
    Chen, Zhuang-zhuang
    Huang, Yu-An
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [34] scPML: pathway-based multi-view learning for cell type annotation from single-cell RNA-seq data
    Zhi-Hua Du
    Wei-Lin Hu
    Jian-Qiang Li
    Xuequn Shang
    Zhu-Hong You
    Zhuang-zhuang Chen
    Yu-An Huang
    Communications Biology, 6
  • [35] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [36] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [37] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [38] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [39] scGAA: a general gated axial-attention model for accurate cell-type annotation of single-cell RNA-seq data
    Tianci Kong
    Tiancheng Yu
    Jiaxin Zhao
    Zhenhua Hu
    Neal Xiong
    Jian Wan
    Xiaoliang Dong
    Yi Pan
    Huilin Zheng
    Lei Zhang
    Scientific Reports, 14 (1)
  • [40] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13