Electrochemical Surface Plasmon Resonance Sensing using a van der Waals Heterostructure

被引:1
|
作者
Jungnickel, Robert [1 ,2 ]
Balasubramanian, Kannan [1 ,2 ]
机构
[1] Humboldt Univ, Sch Analyt Sci Adlershof SALSA, Dept Chem, D-10117 Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, D-10117 Berlin, Germany
来源
ADVANCED SENSOR RESEARCH | 2024年 / 3卷 / 09期
关键词
2D materials; diffusion; electrochemistry; graphene; hexagonal boron nitride; sensor; SPR; MONOLAYER GRAPHENE; ELECTRON-TRANSFER; BORON-NITRIDE; INTERFACES; SPR; SPECTROSCOPY; PERFORMANCE; KINETICS; BLUE;
D O I
10.1002/adsr.202400028
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Coupling surface plasmon resonance (SPR) sensing with electrochemistry (EC) is a promising analytical strategy to obtain information about interfacial phenomena in heterogeneous reactions. Typical EC-SPR sensors utilize a metal film both as the plasmonic material and as the working electrode. In this configuration, the eigenmodulation of the plasmonic properties of the metal film under applied potential results in a background signal, which hampers the unambiguous interpretation of the sensor response due to redox reactions. Here, a new strategy is presented to overcome this disadvantage by using a van der Waals heterostructure (vdW-HS) as the working electrode. The vdW-HS comprises of a graphene / hexagonal boron nitride (hBN) stack on a gold film of a standard SPR sensor. It is shown here that the background signal is completely suppressed enabling the unambiguous analysis of SPR sensor response due to electrochemical reactions. It is further observed that the potential dependent plasmonic signals are not just a reproduction of the electrochemical current and subtle differences can be traced back to the diffusive nature of the redox active species. Finally, it is demonstrated that EC-SPR can be used as a complementary method to distinguish if the electrochemical response is mainly surface-bound or due to diffusion. Here a new strategy is presented to realize an electrochemical surface plasmon resonance (EC-SPR) sensor using a graphene/hexagonal boron nitride heterostructure on gold. With this sensor, it is shown that the potential-dependent modulation of the EC-SPR signal on gold can be completely suppressed, enabling unambiguous monitoring of redox reactions at the graphene-liquid-interface. image
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Electrical control of quantum emitters in a Van der Waals heterostructure
    Simon J. U. White
    Tieshan Yang
    Nikolai Dontschuk
    Chi Li
    Zai-Quan Xu
    Mehran Kianinia
    Alastair Stacey
    Milos Toth
    Igor Aharonovich
    Light: Science & Applications, 11
  • [32] Structural superlubricity in graphene/GaSe van der Waals heterostructure
    Li, Hong
    Wang, Qiaohui
    Xu, Peipei
    Si, Lina
    Dou, Zhaoliang
    Yan, Hongjuan
    Yang, Ye
    Zhou, Gang
    Qing, Tao
    Zhang, Shaohua
    Liu, Fengbin
    PHYSICS LETTERS A, 2022, 452
  • [33] Artificial superconducting Kondo lattice in a van der Waals heterostructure
    Kai Fan
    Heng Jin
    Bing Huang
    Guijing Duan
    Rong Yu
    Zhen-Yu Liu
    Hui-Nan Xia
    Li-Si Liu
    Yao Zhang
    Tao Xie
    Qiao-Yin Tang
    Gang Chen
    Wen-Hao Zhang
    F. C. Chen
    X. Luo
    W. J. Lu
    Y. P. Sun
    Ying-Shuang Fu
    Nature Communications, 15 (1)
  • [34] Diabatic Hamiltonian construction in van der Waals heterostructure complexes
    Xie, Yu
    Sun, Huijuan
    Zheng, Qijing
    Zhao, Jin
    Ren, Hao
    Lan, Zhenggang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (48) : 27484 - 27492
  • [35] Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure
    Steinleitner, Philipp
    Merkl, Philipp
    Graft, Alexander
    Nagler, Philipp
    Watanabe, Kenji
    Taniguchi, Takashi
    Zipfel, Jonas
    Schueller, Christian
    Korn, Tobias
    Chernikov, Alexey
    Brem, Samuel
    Selig, Malte
    Berghauser, Gunnar
    Malic, Ermin
    Huber, Rupert
    NANO LETTERS, 2018, 18 (02) : 1402 - 1409
  • [36] Mixed-Dimensional Van der Waals Heterostructure Photodetector
    Zhou, Jiaoyan
    Xie, Mingzhang
    Ji, Huan
    Cui, Anyang
    Ye, Yan
    Jiang, Kai
    Shang, Liyan
    Zhang, Jinzhong
    Hu, Zhigao
    Chu, Junhao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 18674 - 18682
  • [37] Remote modulation doping in van der Waals heterostructure transistors
    Lee, Donghun
    Lee, Jea Jung
    Kim, Yoon Seok
    Kim, Yeon Ho
    Kim, Jong Chan
    Huh, Woong
    Lee, Jaeho
    Park, Sungmin
    Jeong, Hu Young
    Kim, Young Duck
    Lee, Chul-Ho
    NATURE ELECTRONICS, 2021, 4 (09) : 664 - 670
  • [38] Magnetotransport and lateral confinement in an InSe van der Waals Heterostructure
    Lee, Yongjin
    Pisoni, Riccardo
    Overweg, Hiske
    Eich, Marius
    Rickhaus, Peter
    Patane, Arnalia
    Kudrynskyi, Zakhar R.
    Kovalyuk, Zakhar D.
    Gorbachev, Roman
    Watanabe, Kenji
    Taniguchi, Takashi
    Ihn, Thomas
    Ensslin, Klaus
    2D MATERIALS, 2018, 5 (03):
  • [39] Silicene/GaAs van der Waals heterostructure for optoelectronic applications
    Mubashir A. Kharadi
    Jhuma Saha
    Journal of Materials Science, 2022, 57 : 21324 - 21338
  • [40] Observation of fractional Chern insulators in a van der Waals heterostructure
    Spanton, Eric M.
    Zibrov, Alexander A.
    Zhou, Haoxin
    Taniguchi, Takashi
    Watanabe, Kenji
    Zaletel, Michael P.
    Young, Andrea F.
    SCIENCE, 2018, 360 (6384) : 62 - 66