Model-based Validation as Probabilistic Inference

被引:0
|
作者
Delecki, Harrison [1 ]
Corso, Anthony [1 ]
Kochenderfer, Mykel J. [1 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
来源
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211 | 2023年 / 211卷
基金
美国国家科学基金会;
关键词
safety validation; Bayesian inference;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating the distribution over failures is a key step in validating autonomous systems. Existing approaches focus on finding failures for a small range of initial conditions or make restrictive assumptions about the properties of the system under test. We frame estimating the distribution over failure trajectories for sequential systems as Bayesian inference. Our model-based approach represents the distribution over failure trajectories using rollouts of system dynamics and computes trajectory gradients using automatic differentiation. Our approach is demonstrated in an inverted pendulum control system, an autonomous vehicle driving scenario, and a partially observable lunar lander. Sampling is performed using an off-the-shelf implementation of Hamiltonian Monte Carlo with multiple chains to capture multimodality and gradient smoothing for safe trajectories. In all experiments, we observed improvements in sample efficiency and parameter space coverage compared to black-box baseline approaches. This work is open sourced.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The Probabilistic Interpretation of Model-Based Diagnosis
    Flesch, Ildiko
    Lucas, Peter. J. F.
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 204 - +
  • [22] Model-based testing of probabilistic systems
    Gerhold, Marcus
    Stoelinga, Marielle
    FORMAL ASPECTS OF COMPUTING, 2018, 30 (01) : 77 - 106
  • [23] Probabilistic Model-Based Safety Analysis
    Guedemann, Matthias
    Ortmeier, Frank
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (28): : 114 - 128
  • [24] Model-Based Inference about IR Systems
    Carterette, Ben
    ADVANCES IN INFORMATION RETRIEVAL THEORY, 2011, 6931 : 101 - 112
  • [25] Model-based inference of haplotype block variation
    Greenspan, G
    Geiger, D
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (2-3) : 495 - 506
  • [26] Model-based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach
    Rasmussen, Peter M.
    Smith, Amy F.
    Sakadzic, Sava
    Boas, David A.
    Pries, Axel R.
    Secomb, Timothy W.
    Ostergaard, Leif
    MICROCIRCULATION, 2017, 24 (04)
  • [27] MODEL-BASED DECISION AND INFERENCE IN STUD POKER
    LOPES, LL
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 1976, 105 (03) : 217 - 239
  • [28] Robust inference for parsimonious model-based clustering
    Dotto, Francesco
    Farcomeni, Alessio
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (03) : 414 - 442
  • [29] Model-Based Inference of Punctuated Molecular Evolution
    Manceau, Marc
    Marin, Julie
    Morlon, Helene
    Lambert, Amaury
    MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (11) : 3308 - 3323
  • [30] In defence of model-based inference in phylogeography REPLY
    Beaumont, Mark A.
    Nielsen, Rasmus
    Robert, Christian
    Hey, Jody
    Gaggiotti, Oscar
    Knowles, Lacey
    Estoup, Arnaud
    Panchal, Mahesh
    Corander, Jukka
    Hickerson, Mike
    Sisson, Scott A.
    Fagundes, Nelson
    Chikhi, Lounes
    Beerli, Peter
    Vitalis, Renaud
    Cornuet, Jean-Marie
    Huelsenbeck, John
    Foll, Matthieu
    Yang, Ziheng
    Rousset, Francois
    Balding, David
    Excoffier, Laurent
    MOLECULAR ECOLOGY, 2010, 19 (03) : 436 - 446