Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design

被引:4
|
作者
Firoozi, Ali Akbar [1 ]
Hejazi, Farzad [2 ]
Firoozi, Ali Asghar [1 ]
机构
[1] Univ Botswana, Fac Engn & Technol, Dept Civil Engn, UB0061, Gaborone, Botswana
[2] Univ West England, Sch Engn, Bristol BS16 1QY, England
关键词
aerodynamic optimization; wind turbine blades; Computational Fluid Dynamics (CFD); renewable energy; material innovation; artificial intelligence in energy; COMPOSITE-MATERIALS; ENVIRONMENTAL IMPACTS; AIRFOIL DESIGN; CHALLENGES;
D O I
10.3390/en17122919
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Amid rising global demand for sustainable energy, wind energy emerges as a crucial renewable resource, with the aerodynamic optimization of wind turbine blades playing a key role in enhancing energy efficiency. This systematic review scrutinizes recent advancements in blade aerodynamics, focusing on the integration of cutting-edge aerodynamic profiles, variable pitch and twist technologies, and innovative materials. It extensively explores the impact of Computational Fluid Dynamics (CFD) and Artificial Intelligence (AI) on blade design enhancements, illustrating their significant contributions to aerodynamic efficiency improvements. By reviewing research from the last decade, this paper provides a comprehensive overview of current trends, addresses ongoing challenges, and suggests potential future developments in wind turbine blade optimization. Aimed at researchers, engineers, and policymakers, this review serves as a crucial resource, guiding further innovations and aligning with global renewable energy objectives. Ultimately, this work seeks to facilitate technological advancements that enhance the efficiency and viability of wind energy solutions.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Aerodynamic and structural optimization of wind turbine blade with static aeroelastic effects
    Zhu, Jie
    Ni, Xiaohui
    Shen, Xiaomei
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2020, 15 (01) : 55 - 64
  • [22] AERODYNAMIC DESIGN AND OPTIMIZATION OF A SMALL SCALE WIND TURBINE
    Kroeger, G.
    Siller, U.
    Dabrowski, J.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 2B, 2014,
  • [23] Improved aerodynamic optimization for the design of wind turbine blades
    Chi, Hua-Wei
    Wu, Pey-Shey
    Chen, Kamiru
    Jhuo, Yue-Hua
    Wu, Hung-Yun
    JOURNAL OF VIBROENGINEERING, 2012, 14 (03) : 1132 - 1140
  • [24] Optimization design on wind turbine blade sectional stiffness
    Liao, Cai-Cai
    Wang, Jian-Li
    Shi, Ke-Zhong
    Xu, Jian-Zhong
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (07): : 1127 - 1130
  • [25] Wind Turbine Blade Design
    Schubel, Peter J.
    Crossley, Richard J.
    ENERGIES, 2012, 5 (09) : 3425 - 3449
  • [26] Large-scale wind turbine blade design and aerodynamic analysis
    Wang TongGuang
    Wang Long
    Zhong Wei
    Xu BoFeng
    Chen Li
    CHINESE SCIENCE BULLETIN, 2012, 57 (05): : 466 - 472
  • [27] Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake
    Dias Do Rio Vaz, Deborah Aline Tavares
    Pinheiro Vaz, Jerson Rogerio
    Amarante Mesquita, Andre Luiz
    Pinho, Joao Tavares
    Brasil Junior, Antonio Cesar Pinho
    RENEWABLE ENERGY, 2013, 55 : 296 - 304
  • [28] Aerodynamic and Structural Design of a Wind Turbine Blade by Using QBlade Software
    Tien-Anh Tran
    Thi-Uyen-Uyen Nguyen
    PROCEEDINGS OF THE 3RD ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL, MACHINES AND METHODS FOR SUSTAINABLE DEVELOPMENT, VOL 2, MMMS 2022, 2024, : 507 - 513
  • [29] Large-scale wind turbine blade design and aerodynamic analysis
    WANG TongGuang1*
    2 China Aerodynamics Research and Development Center
    Science Bulletin, 2012, (05) : 466 - 472
  • [30] Large-scale wind turbine blade design and aerodynamic analysis
    WANG TongGuang WANG Long ZHONG Wei XU BoFeng CHEN Li College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics Nanjing China China Aerodynamics Research and Development Center Mianyang China
    Chinese Science Bulletin, 2012, 57 (05) : 466 - 472