Robust multi-task learning and online refinement for spacecraft pose estimation across domain gap

被引:18
|
作者
Park, Tae Ha [1 ]
D'Amico, Simone [1 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, 496 Lomita Mall, Stanford, CA 94305 USA
关键词
Vision-only navigation; Rendezvous; Pose estimation; Computer vision; Deep learning; Domain gap;
D O I
10.1016/j.asr.2023.03.036
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work presents Spacecraft Pose Network v2 (SPNv2), a Convolutional Neural Network (CNN) for pose estimation of noncooperative spacecraft across domain gap. SPNv2 is a multi-scale, multi-task CNN which consists of a shared multi-scale feature encoder and multiple prediction heads that perform different tasks on a shared feature output. These tasks are all related to detection and pose estimation of a target spacecraft from an image, such as prediction of pre-defined satellite keypoints, direct pose regression, and binary segmentation of the satellite foreground. It is shown that by jointly training on different yet related tasks with extensive data augmentations on synthetic images only, the shared encoder learns features that are common across image domains that have fundamentally different visual characteristics compared to synthetic images. This work also introduces Online Domain Refinement (ODR) which refines the parameters of the normalization layers of SPNv2 on the target domain images online at deployment. Specifically, ODR performs self-supervised entropy minimization of the predicted satellite foreground, thereby improving the CNN's performance on the target domain images without their pose labels and with minimal computational efforts. The GitHub repository for SPNv2 is available at https://github.com/tpark94/spnv2. (c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:5726 / 5740
页数:15
相关论文
共 50 条
  • [1] ROM: A Robust Online Multi-Task Learning Approach
    Zhang, Chi
    Zhao, Peilin
    Hao, Shuji
    Soh, Yeng Chai
    Lee, Bu Sung
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1341 - 1346
  • [2] Robust Online Multi-Task Learning with Correlative and Personalized Structures
    Yang, Peng
    Zhao, Peilin
    Gao, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (11) : 2510 - 2521
  • [3] Multi-task, multi-domain learning: Application to semantic segmentation and pose regression
    Fourure, Damien
    Emonet, Remi
    Fromont, Elisa
    Muselet, Damien
    Neverova, Natalia
    Tremeau, Alain
    Wolf, Christian
    NEUROCOMPUTING, 2017, 251 : 68 - 80
  • [4] Classification-based Multi-task Learning for Efficient Pose Estimation Network
    Kang, Dongoh
    Roh, Myung-Cheol
    Kim, Hansaem
    Kim, Yonghyun
    Lee, Seong-Whan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3295 - 3302
  • [5] A Multi-Task Learning Framework for Head Pose Estimation under Target Motion
    Yan, Yan
    Ricci, Elisa
    Subramanian, Ramanathan
    Liu, Gaowen
    Lanz, Oswald
    Sebe, Nicu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (06) : 1070 - 1083
  • [6] Kernel Online Multi-task Learning
    Sumitra, S.
    Aravindh, A.
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, ICC3 2015, 2016, 412 : 55 - 64
  • [7] ADAPTIVE AND ROBUST MULTI-TASK LEARNING
    Duan, Yaqi
    Wang, Kaizheng
    ANNALS OF STATISTICS, 2023, 51 (05): : 2015 - 2039
  • [8] Multi-Task Head Pose Estimation in-the-Wild
    Valle, Roberto
    Buenaposada, Jose M.
    Baumela, Luis
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2874 - 2881
  • [9] Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network
    Li, Sijin
    Liu, Zhi-Qiang
    Chan, Antoni B.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 488 - +
  • [10] Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network
    Li, Sijin
    Liu, Zhi-Qiang
    Chan, Antoni B.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 113 (01) : 19 - 36