Development for Electrical Fault Detection and Classification Analysis Model based on Machine Learning Algorithms

被引:0
|
作者
Kim, Junho [1 ]
Sim, Sunhwa [2 ]
Kim, Seokjun [3 ]
Cho, Seokheon [4 ]
Han, Changhee [5 ]
机构
[1] Keimyung Univ, Dept Robot Engn, Daegu, South Korea
[2] Kumoh Natl Inst Technol, Dept Med IT Convergence Engn, Gumi, South Korea
[3] Kumoh Natl Inst Technol, Dept Semicond Syst Engn, Gumi, South Korea
[4] Univ San Diego, Qualcomm Inst, La Jolla, CA USA
[5] Gyeongsang Natl Univ, Dept Elect Engn, Jinju, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; electrical fault; fault detection; SYSTEMS;
D O I
10.1109/SusTech60925.2024.10553405
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of industry and technology in modern society, many industries and houses require a sufficient electricity supply. As demand for electricity increases, rapid detection of the type and location of electrical faults within the power system is critical to ensure the reliable operation of power systems. Since the traditional fault detection method has low accuracy and takes much time to detect the fault type and location, we propose a new electrical fault detection model based on machine learning algorithms. MATLAB Simulink collects the line current and bus voltage data during power system fault events. We consider two machine learning algorithms, Random Forest and K-Nearest Neighbor (K-NN) algorithms, as electrical fault detection and classification models. The data collected from the power system simulation is processed in various ways and then applied to the machine learning algorithms. As a result, we verify that the learning model based on the Random Forest algorithms, using the peak-to-peak value of the line current and bus voltage as training data, shows the best performance for detecting and predicting electrical faults.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 50 条
  • [41] Application of Machine Learning Algorithms for Fault Detection and Diagnosis in Power Systems
    Haripriya, M. P.
    Vasanth, Durai R.
    Anand, M. Suresh
    Kulkarni, Vikas Vitthal
    Farook, S.
    Kumar, K. R. Senthil
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [42] Fault detection and diagnosis in refrigeration systems using machine learning algorithms
    Soltani, Zahra
    Sorensen, Kresten Kjaer
    Leth, John
    Bendtsen, Jan Dimon
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 144 : 34 - 45
  • [43] Series DC Arc Fault Detection Using Machine Learning Algorithms
    Dang, Hoang-Long
    Kim, Jaechang
    Kwak, Sangshin
    Choi, Seungdeog
    IEEE ACCESS, 2021, 9 : 133346 - 133364
  • [44] Probabilistic weighted voting model using multiple machine learning methods for fault detection and classification
    Ulker, Fevzeddin
    Kucuker, Ahmet
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 41 (05) : 1542 - 1565
  • [45] Machine Learning Based Hybrid Model for Fault Detection in Wireless Sensors Data
    Vamsi, P. Raghu
    Chahuan, Anjali
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2020, 7 (24) : 1 - 8
  • [46] Influence of Data Balancing on Transformer DGA Fault Classification With Machine Learning Algorithms
    Rajesh, Kandala N. V. P. S.
    Rao, U. Mohan
    Fofana, I.
    Rozga, P.
    Paramane, Ashish
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2023, 30 (01) : 385 - 392
  • [47] Credit Card Fraud Detection Model-based Machine Learning Algorithms
    Idrees, Amira M.
    Elhusseny, Nermin Samy
    Ouf, Shimaa
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1649 - 1662
  • [48] An optimized extreme learning machine-based novel model for bearing fault classification
    Udmale, Sandeep S.
    Nath, Aneesh G.
    Singh, Durgesh
    Singh, Aman
    Cheng, Xiaochun
    Anand, Divya
    Singh, Sanjay Kumar
    EXPERT SYSTEMS, 2024, 41 (02)
  • [49] Testing machine learning algorithms on a binary classification phenological model
    Dai, Wujun
    Jin, Huiying
    Zhou, Lin
    Liu, Tong
    Zhang, Yuhong
    Zhou, Zhiqiang
    Fu, Yongshuo H.
    Jin, Guangze
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2023, 32 (01): : 178 - 190
  • [50] Performance Analysis of Machine Learning Classification Algorithms in Static Object Detection for Video Surveillance Applications
    Ariffa Begum, S.
    Askarunisa, A.
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 115 (02) : 1291 - 1307