CT-DQN: Control-Tutored Deep Reinforcement Learning

被引:0
|
作者
De Lellis, Francesco [1 ]
Coraggio, Marco [2 ]
Russo, Giovanni [3 ]
Musolesi, Mirco [4 ,5 ]
di Bernardo, Mario [1 ,2 ]
机构
[1] Univ Naples Federico II, Naples, Italy
[2] Scuola Super Meridionale, Naples, Italy
[3] Univ Salerno, Salerno, Italy
[4] UCL, London, England
[5] Univ Bologna, Bologna, Italy
关键词
Reinforcement learning based control; deep reinforcement learning; feedback control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the major challenges in Deep Reinforcement Learning for control is the need for extensive training to learn a policy. Motivated by this, we present the design of the Control-Tutored Deep Q-Networks (CT-DQN) algorithm, a Deep Reinforcement Learning algorithm that leverages a control tutor, i.e., an exogenous control law, to reduce learning time. The tutor can be designed using an approximate model of the system, without any assumption about the knowledge of the system dynamics. There is no expectation that it will be able to achieve the control objective if used standalone. During learning, the tutor occasionally suggests an action, thus partially guiding exploration. We validate our approach on three scenarios from OpenAI Gym: the inverted pendulum, lunar lander, and car racing. We demonstrate that CT-DQN is able to achieve better or equivalent data efficiency with respect to the classic function approximation solutions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] DEEP REINFORCEMENT LEARNING FOR TRANSFER OF CONTROL POLICIES
    Cunningham, James D.
    Miller, Simon W.
    Yukish, Michael A.
    Simpson, Timothy W.
    Tucker, Conrad S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
  • [22] Deep Reinforcement Learning to Assist Command and Control
    Park, Song Jun
    Vindiola, Manuel M.
    Logie, Anne C.
    Narayanan, Priya
    Davies, Jared
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS IV, 2022, 12113
  • [23] Deep Decentralized Reinforcement Learning for Cooperative Control
    Koepf, Florian
    Tesfazgi, Samuel
    Flad, Michael
    Hohmann, Soeren
    IFAC PAPERSONLINE, 2020, 53 (02): : 1555 - 1562
  • [24] Control of chaotic systems by deep reinforcement learning
    Bucci, M. A.
    Semeraro, O.
    Allauzen, A.
    Wisniewski, G.
    Cordier, L.
    Mathelin, L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2231):
  • [25] Deep Reinforcement Learning Approaches for Process Control
    Spielberg, S. P. K.
    Gopaluni, R. B.
    Loewen, P. D.
    2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), 2017, : 201 - 206
  • [26] Feedback Control For Cassie With Deep Reinforcement Learning
    Xie, Zhaoming
    Berseth, Glen
    Clary, Patrick
    Hurst, Jonathan
    van de Panne, Michiel
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1241 - 1246
  • [27] Deep Reinforcement Learning for Building HVAC Control
    Wei, Tianshu
    Wang, Yanzhi
    Zhu, Qi
    PROCEEDINGS OF THE 2017 54TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2017,
  • [28] Framework for Control and Deep Reinforcement Learning in Traffic
    Wu, Cathy
    Parvate, Kanaad
    Kheterpal, Nishant
    Dickstein, Leah
    Mehta, Ankur
    Vinitsky, Eugene
    Bayen, Alexandre M.
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [29] Rax: Deep Reinforcement Learning for Congestion Control
    Bachl, Maximilian
    Zseby, Tanja
    Fabini, Joachim
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [30] Deep Reinforcement Learning Control of Quantum Cartpoles
    Wang, Zhikang T.
    Ashida, Yuto
    Ueda, Masahito
    PHYSICAL REVIEW LETTERS, 2020, 125 (10)