Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images

被引:3
|
作者
Kim, Hwisong [1 ]
Kim, Duk-jin [1 ]
Kim, Junwoo [2 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea
[2] Seoul Natl Univ, Future innovat inst, Sheung, South Korea
关键词
Synthetic aperture radar (SAR); Deep learning; Convolutional neural network (CNN); Water detection; Morphology transformation; Edge detection;
D O I
10.7780/kjrs.2022.38.5.2.11
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Synthetic Aperture Radar (SAR) is considered to be suitable for near real-time inundation monitoring. The distinctly different intensity between water and land makes it adequate for waterbody detection, but the intrinsic speckle noise and variable intensity of SAR images decrease the accuracy of waterbody detection. In this study, we suggest two modules, named 'morphology module' and 'edgeenhanced module', which are the combinations of pooling layers and convolutional layers, improving the accuracy of waterbody detection. The morphology module is composed of min-pooling layers and max-pooling layers, which shows the effect of morphological transformation. The edge-enhanced module is composed of convolution layers, which has the fixed weights of the traditional edge detection algorithm. After comparing the accuracy of various versions of each module for U-Net, we found that the optimal combination is the case that the morphology module of min-pooling and successive layers of min-pooling and max-pooling, and the edge-enhanced module of Scharr filter were the inputs of conv9. This morphologic and edge-enhanced U-Net improved the F1-score by 9.81% than the original U-Net. Qualitative inspection showed that our model has capability of detecting small-sized waterbody and detailed edge of water, which are the distinct advancement of the model presented in this research, compared to the original U-Net.
引用
收藏
页码:793 / 810
页数:18
相关论文
共 50 条
  • [21] Automatic Segmentation of Immunohistochemical Images based on U-NET Architectures
    Berersky, Olen
    Pitsun, Oleh
    Derysh, Bohdan
    Datsko, Tamara
    Berezka, Kateryna
    Savka, Nadiya
    IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 22 - 33
  • [22] Automatic Skeleton Segmentation in CT Images Based on U-Net
    Milara, Eva
    Gomez-Grande, Adolfo
    Sarandeses, Pilar
    Seiffert, Alexander P.
    Gomez, Enrique J.
    Sanchez-Gonzalez, Patricia
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (05): : 2390 - 2400
  • [23] Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection Using a Dual Stream U-Net
    Hafner, Sebastian
    Nascetti, Andrea
    Azizpour, Hossein
    Ban, Yifang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection Using a Dual Stream U-Net
    Hafner, Sebastian
    Nascetti, Andrea
    Azizpour, Hossein
    Ban, Yifang
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [25] Segmentation of Mammogram Images Using U-Net with Fusion of Channel and Spatial Attention Modules (U-Net CASAM)
    Robert Singh, A.
    Vidya, S.
    Hariharasitaraman, S.
    Athisayamani, Suganya
    Hsu, Fang Rong
    Lecture Notes in Networks and Systems, 2024, 966 LNNS : 435 - 448
  • [26] Real-time Water Area Segmentation for USV using Enhanced U-Net
    Ling, Gui
    Suo, Feiyang
    Lin, Zhen
    Li, Yanjun
    Xiang, Ji
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2533 - 2538
  • [27] CHANGE ANALYSIS USING MULTITEMPORAL SENTINEL-1 SAR IMAGES
    Thu Trang Le
    Atto, Abdourrahmane M.
    Trouve, Emmanuel
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4145 - 4148
  • [28] A New ground open water detection scheme using Sentinel-1 SAR images
    Tan, Songxin
    EUROPEAN JOURNAL OF REMOTE SENSING, 2024, 57 (01)
  • [29] Brain Tumor Segmentation Using U-Net and Edge Contour Enhancement
    Ho, Te-Wei
    Qi, Huan
    Lai, Feipei
    Xiao, Fu-Ren
    Wu, Jin-Ming
    2019 3RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2019), 2019, : 75 - 79
  • [30] Sentinel-1 SAR Images and Deep Learning for Water Body Mapping
    Pech-May, Fernando
    Aquino-Santos, Raul
    Delgadillo-Partida, Jorge
    REMOTE SENSING, 2023, 15 (12)