Efficiency of End-to-End Speech Recognition for Languages with Scarce Resources

被引:0
|
作者
Rudzionis, Vytautas [1 ]
Malukas, Ugnius [2 ]
Lopata, Audrius [2 ]
机构
[1] Vilnius Univ, Kaunas Fac, Muitines 8, Kaunas, Lithuania
[2] Kaunas Univ Technol, Studentu 50, Kaunas, Lithuania
关键词
Speech recognition; Hybrid methods; Machine learning; End-to-end speech recognition;
D O I
10.1007/978-3-031-16302-9_20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern deep learning based speech recognition methods allow for achieving phenomenal speech recognition accuracy. But it requires enormous amounts of data to train such systems to achieve high recognition accuracy. Many less widely spoken languages simply do not possess the necessary amounts of speech corpora. The paper presents attempts to evaluate DeepSpeech-based speech recognition efficiency with the limited amounts of training data available and the ways to improve the accuracy. The experiments showed that the accuracy of DeepSpeech2 recognizer with about 100 h of speech corpora used for training is quite modest but the application of simple grammatical constraints allowed to reduce the word error rate to 23-25%.
引用
下载
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [11] END-TO-END ANCHORED SPEECH RECOGNITION
    Wang, Yiming
    Fan, Xing
    Chen, I-Fan
    Liu, Yuzong
    Chen, Tongfei
    Hoffmeister, Bjorn
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7090 - 7094
  • [12] IMPROVING UNSUPERVISED STYLE TRANSFER IN END-TO-END SPEECH SYNTHESIS WITH END-TO-END SPEECH RECOGNITION
    Liu, Da-Rong
    Yang, Chi-Yu
    Wu, Szu-Lin
    Lee, Hung-Yi
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 640 - 647
  • [13] END-TO-END TRAINING OF A LARGE VOCABULARY END-TO-END SPEECH RECOGNITION SYSTEM
    Kim, Chanwoo
    Kim, Sungsoo
    Kim, Kwangyoun
    Kumar, Mehul
    Kim, Jiyeon
    Lee, Kyungmin
    Han, Changwoo
    Garg, Abhinav
    Kim, Eunhyang
    Shin, Minkyoo
    Singh, Shatrughan
    Heck, Larry
    Gowda, Dhananjaya
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 562 - 569
  • [14] END-TO-END VISUAL SPEECH RECOGNITION WITH LSTMS
    Petridis, Stavros
    Li, Zuwei
    Pantic, Maja
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2592 - 2596
  • [15] An End-to-End model for Vietnamese speech recognition
    Van Huy Nguyen
    2019 IEEE - RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF), 2019, : 307 - 312
  • [16] SYNCHRONOUS TRANSFORMERS FOR END-TO-END SPEECH RECOGNITION
    Tian, Zhengkun
    Yi, Jiangyan
    Bai, Ye
    Tao, Jianhua
    Zhang, Shuai
    Wen, Zhengqi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7884 - 7888
  • [17] End-to-End Speech Recognition of Tamil Language
    Changrampadi, Mohamed Hashim
    Shahina, A.
    Narayanan, M. Badri
    Khan, A. Nayeemulla
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02): : 1309 - 1323
  • [18] PARAMETER UNCERTAINTY FOR END-TO-END SPEECH RECOGNITION
    Braun, Stefan
    Liu, Shih-Chii
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5636 - 5640
  • [19] End-to-End Speech Recognition For Arabic Dialects
    Seham Nasr
    Rehab Duwairi
    Muhannad Quwaider
    Arabian Journal for Science and Engineering, 2023, 48 : 10617 - 10633
  • [20] Review of End-to-End Streaming Speech Recognition
    Wang, Aohui
    Zhang, Long
    Song, Wenyu
    Meng, Jie
    Computer Engineering and Applications, 2024, 59 (02) : 22 - 33