Convergence analysis of a fully discrete scheme for diffusion-wave equation forced by tempered fractional Brownian motion

被引:0
|
作者
Liu, Xing [1 ]
Li, Hui [2 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi Key Lab Metaverse & Virtual Simulat, Huangshi 435002, Peoples R China
[2] Hubei Univ Educ, Sch Math & Stat, Wuhan 430205, Peoples R China
关键词
Nonlocal terms; Spectral Galerkin method; Grunwald-Letnikov formula; Strong convergence rates; DRIVEN; APPROXIMATION; ORDER;
D O I
10.1016/j.camwa.2024.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a fully discrete approximation of stochastic diffusion-wave equation driven by additive tempered fractional Gaussian noise. This additive noise exhibits semi-long range dependence. The model involves two nonlocal terms in time, i.e., a Caputo fractional derivative and a tempered fractional Brownian motion. The space discretization is achieved via the spectral Galerkin method. The Caputo fractional derivative of order alpha is an element of(1, 2) is approximated by using the Grunwald-Letnikov formula. Combining Mittag-Leffler function, Laplace transform and z-transform, we establish the error estimates of the full discretization in the sense of mean-squared L-2- norm. Numerical experiments are presented to confirm the strong convergence rates.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 50 条
  • [1] An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation
    An, Wenjing
    Zhang, Xingdong
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 354 - 369
  • [2] A fully discrete direct discontinuous Galerkin Method for the fractional diffusion-wave equation
    Huang, Chaobao
    An, Na
    Yu, Xijun
    [J]. APPLICABLE ANALYSIS, 2018, 97 (04) : 659 - 675
  • [3] A fully discrete difference scheme for a diffusion-wave system
    Sun, ZZ
    Wu, XN
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (02) : 193 - 209
  • [4] A novel finite difference discrete scheme for the time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 17 - 30
  • [5] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [6] A strong convergence to the tempered fractional Brownian motion
    Shen, Guangjun
    Xia, Liangwen
    Zhu, Dongjin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 4103 - 4118
  • [7] Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    Wei, Huayi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1218 - 1232
  • [8] Fourier Convergence Analysis for a Fokker-Planck Equation of Tempered Fractional Langevin-Brownian Motion
    Wang, Maoping
    Deng, Weihua
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024, 17 (03) : 751 - 776
  • [9] TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A146 - A170
  • [10] A Difference Scheme with Intrinsic Parallelism for Fractional Diffusion-wave Equation with Damping
    Li-Fei WU
    Xiao-Zhong YANG
    Min LI
    [J]. Acta Mathematicae Applicatae Sinica, 2021, 37 (03) : 602 - 616