battery storage plants;
electric vehicles;
renewable energy sources;
MODEL;
D O I:
10.1049/esi2.12158
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Lithium-ion batteries are widely employed in electric vehicles, power grid energy storage, and other fields. Thermal fault diagnostics for battery packs is crucial to preventing thermal runaway from impairing the safe operation and extended cycle service life of batteries. Therefore, a lithium-ion battery thermal fault diagnosis model based on deep learning algorithms is presented, which includes three parts: autoencoder denoising network, coarse mask generator, and mask precise adjustment. Autoencoder denoising network can reduce data noise during thermal imaging acquisition, improve the anti-interference ability of diagnostic models, and ensure the accuracy of thermal runaway diagnosis. A two-stage diagnostic structure is then formulated by the coarse mask generator and mask precise adjustment, which enable quick identification, categorisation, and localisation of thermal fault battery cells. According to the test results, the segmentation boundary is more distinct and is capable of matching the original image's level. The recognition accuracy of the thermal diagnosis model for faulty batteries is close to 100%. After denoising by the autoencoder, the prediction results improved by 22% compared to non-local mean denoising and by about 32% compared to noisy images.
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
Xue, Qiao
Li, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, EnglandKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
Li, Guang
Zhang, Yuanjian
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ Belfast, Sir William Wright Technol Ctr, Belfast BT9 5BS, Antrim, North IrelandKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
Zhang, Yuanjian
Shen, Shiquan
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
Shen, Shiquan
Chen, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, EnglandKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
Chen, Zheng
Liu, Yonggang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Automot Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
机构:
MCKV Inst Engn, Elect Engn Dept, Howrah 712104, W Bengal, IndiaMCKV Inst Engn, Elect Engn Dept, Howrah 712104, W Bengal, India
Sadhukhan, Chandrani
论文数: 引用数:
h-index:
机构:
Mitra, Swarup Kumar
Bhattacharyya, Suvanjan
论文数: 0引用数: 0
h-index: 0
机构:
Birla Inst Technol & Sci, Dept Mech Engn, Pilani Campus, Vidyavihar 333031, Rajasthan, IndiaMCKV Inst Engn, Elect Engn Dept, Howrah 712104, W Bengal, India
Bhattacharyya, Suvanjan
Almatrafi, Eydhah
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Coll Engn Rabigh, Mech Engn Dept, Jeddah, Saudi Arabia
King Abdulaziz Univ, KA CARE Energy Res & Innovat Ctr, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, Ctr Excellence Renewable Energy & Power Syst, Jeddah, Saudi ArabiaMCKV Inst Engn, Elect Engn Dept, Howrah 712104, W Bengal, India
Almatrafi, Eydhah
Saleh, Bahaa
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Coll Engn, Mech Engn Dept, POB 11099, Taif 21944, Saudi ArabiaMCKV Inst Engn, Elect Engn Dept, Howrah 712104, W Bengal, India
Saleh, Bahaa
Naskar, Mrinal Kanti
论文数: 0引用数: 0
h-index: 0
机构:
Jadavpur Univ, Elect & Telecommun Engn Dept, Jadavpur 700032, W Bengal, IndiaMCKV Inst Engn, Elect Engn Dept, Howrah 712104, W Bengal, India