AUTOMATICALLY DESIGNED DEEP GAUSSIAN PROCESS FOR TURBOMACHINERY APPLICATION

被引:0
|
作者
Jin, Yuan [1 ]
Chai, Jin [1 ]
Jung, Olivier [2 ]
机构
[1] BSS TurboTech Ltd, Tianzhudong Rd, Beijing, Peoples R China
[2] Safran China, Jiaming Ctr, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Thanks to their flexibility and robustness to overfitting, Gaussian Processes (GPs) are widely used as black-box function approximators. Deep Gaussian Processes (DGPs) are multilayer generations of GPs. The deep architecture alleviates the kernel dependance of GPs, while complicates model inference. The so-called doubly stochastic variational approach, which does not force the independence between layers, shows its effectiveness in large dataset classification and regression in the literature. Meanwhile, similar to deep neural network, DGPs also require application-specific architecture. In addition, the doubly stochastic process introduces extra hyperparameters, which further increases the difficulty in model definition and training. In this study, we apply doubly stochastic variational inference DGP as surrogate model on high-dimensional structural data regression drawn from turbomachinery area. A discrete optimizer, which is based on classification discriminating good solutions from bad ones, is utilized to realize automatic DGP model design and tuning. Empirical experiments are performed firstly on analytical functions to demonstrate the capability of DPGs in high-dimensional and non-stationary data handling. Two industrial turbomachinery problems with respectively 80 and 180 input dimensions are addressed. The first application consists in a turbine frame design problem. In the second application, DGP is used to describe the correlation between 3D blade profiles of a multi-stage low pressure turbine and the corresponding turbine total-total efficiency. Through these two applications, we show the applicability of the proposed automatically designed DGPs in turbomachinery area by highlighting their outperformance with respect to classic GPs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Deep Gaussian Process for the Approximation of a Quadratic Eigenvalue Problem: Application to Friction-Induced Vibration
    Sadet, Jeremy
    Massa, Franck
    Tison, Thierry
    Talbi, El-Ghazali
    Turpin, Isabelle
    VIBRATION, 2022, 5 (02): : 344 - 369
  • [22] Three generations of automatically designed robots
    Pollack, JB
    Lipson, H
    Hornby, G
    Funes, P
    ARTIFICIAL LIFE, 2001, 7 (03) : 215 - 223
  • [23] Application of SPIV in turbomachinery
    Baojie Liu
    Xianjun Yu
    Huoxing Liu
    Haokang Jiang
    Huijing Yuan
    Yueting Xu
    Experiments in Fluids, 2006, 40 : 621 - 642
  • [24] APPLICATION OF FSI ON TURBOMACHINERY
    Sun Tao
    Wang Yi
    Xie Rong
    Ma ZhenYue
    2011 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2011,
  • [25] Application of SPIV in turbomachinery
    Liu, BJ
    Yu, XJ
    Liu, HX
    Jiang, HK
    Yuan, HJ
    Xu, YT
    EXPERIMENTS IN FLUIDS, 2006, 40 (04) : 621 - 642
  • [26] Model selection with application to gamma process and inverse Gaussian process
    Zhang, M.
    Revie, M.
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 1505 - 1511
  • [27] A Deep Gaussian Process-Based Flight Trajectory Prediction Approach and Its Application on Conflict Detection
    Chen, Zhengmao
    Guo, Dongyue
    Lin, Yi
    ALGORITHMS, 2020, 13 (11) : 1 - 19
  • [28] Music Emotion Recognition Using Deep Gaussian Process
    Chen, Sih-Huei
    Lee, Yuan-Shan
    Hsieh, Wen-Chi
    Wang, Jia-Ching
    2015 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2015, : 495 - 498
  • [29] Deep Clustering using Dirichlet Process Gaussian Mixture
    Lim, Kart-Leong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [30] An Interpretable and Sample Efficient Deep Kernel for Gaussian Process
    Dai, Yijue
    Zhang, Tianjian
    Lin, Zhidi
    Yin, Feng
    Theodoridis, Sergios
    Cui, Shuguang
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 759 - 768