High-performance quantum anomalous Hall effect in monolayer Ti2Sb2KRb and Ti2Bi2NaK

被引:2
|
作者
Wu, Yanzhao [1 ]
Deng, Li [1 ]
Tong, Junwei [2 ]
Yin, Xiang [1 ]
Zhang, Zhijun [3 ]
Tian, Fubo [4 ]
Zhang, Xianmin [1 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
[2] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
[3] Liaoning Inst Sci & Technol, Benxi 117004, Peoples R China
[4] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS;
D O I
10.1063/5.0206667
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum anomalous Hall (QAH) insulators are an ideal platform for developing topological electronic devices, but their low observation temperature limits the applications. In this study, based on first-principles calculations, monolayer Ti2Sb2KRb and Ti2Bi2NaK are demonstrated to be QAH insulators with topological gaps 43 and 57 meV, respectively. Their Chern numbers are calculated to be C=-2. The study of electronic structures indicates that the ferromagnetic topological property is induced by the energy band inversion of dxy and dx2-y2 orbitals for Ti atoms near the Dirac cone. Both monolayer Ti2Sb2KRb and Ti2Bi2NaK exhibit a perpendicular magnetic anisotropy, and their Curie temperatures are estimated to be 480 and 478 K, respectively. The ferromagnetic coupling is induced by the small crystal-field splitting energy caused by Sb and Bi atom's large radius. Our study suggests that monolayer Ti2Sb2KRb and Ti2Bi2NaK are promising candidates for room temperature QAH insulators.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Quantum anomalous Hall effect in Cr2Ge2Te6/Bi2Se3/Cr2Ge2Te6 heterostructures
    Li, Ping
    You, Yuwei
    Huang, Kai
    Luo, Weidong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (46)
  • [32] Quantum anomalous Hall effect in a stable 1T-YN2 monolayer with a large nontrivial bandgap and a high Chern number
    Kong, Xiangru
    Li, Linyang
    Leenaerts, Ortwin
    Wang, Weiyang
    Liu, Xiong-Jun
    Peeters, Francois M.
    NANOSCALE, 2018, 10 (17) : 8153 - 8161
  • [33] The gate length effect of high-performance monolayer SiAs2 FETs
    Zheng, Quan
    Zhang, Xi
    Feng, Leihao
    Xiang, Gang
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (08)
  • [34] High-Performance Field-Effect-Transistors on Monolayer WSe2
    Liu, W.
    Cao, W.
    Kang, J.
    Banerjee, K.
    SEMICONDUCTORS, DIELECTRICS, AND METALS FOR NANOELECTRONICS 11, 2013, 58 (07): : 281 - 285
  • [35] High-performance Ti/IrO2-RhOx-TiO2/α-PbO2/β-PbO2 electrodes for scale inhibitors degradation
    Jin, Huachang
    Zhang, Xuejiao
    Yu, Yang
    Chen, Xueming
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [36] Electrical conductivity, thermopower, and hall effect of Ti3AIC2, Ti4AIN3, and Ti3SiC2
    Barsoum, MW
    Yoo, HI
    Polushina, IK
    Rud, VY
    Rud, YV
    El-Raghy, T
    PHYSICAL REVIEW B, 2000, 62 (15): : 10194 - 10198
  • [37] Effects of IrO2 interlayer on the electrochemical performance of Ti/Sb-SnO2 electrodes
    Li, Xia
    Yan, Jing
    Zhu, Kaigui
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 878
  • [38] Monolayer V2MX4: A New Family of Quantum Anomalous Hall Insulators
    Jiang, Yadong
    Wang, Huan
    Bao, Kejie
    Liu, Zhaochen
    Wang, Jing
    PHYSICAL REVIEW LETTERS, 2024, 132 (10)
  • [39] Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film
    W. Li
    M. Claassen
    Cui-Zu Chang
    B. Moritz
    T. Jia
    C. Zhang
    S. Rebec
    J. J. Lee
    M. Hashimoto
    D.-H. Lu
    R. G. Moore
    J. S. Moodera
    T. P. Devereaux
    Z.-X. Shen
    Scientific Reports, 6
  • [40] High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice
    Haiming Deng
    Zhiyi Chen
    Agnieszka Wołoś
    Marcin Konczykowski
    Kamil Sobczak
    Joanna Sitnicka
    Irina V. Fedorchenko
    Jolanta Borysiuk
    Tristan Heider
    Łukasz Pluciński
    Kyungwha Park
    Alexandru B. Georgescu
    Jennifer Cano
    Lia Krusin-Elbaum
    Nature Physics, 2021, 17 : 36 - 42