Some factorization results for bivariate polynomials

被引:0
|
作者
Bonciocat, Nicolae Ciprian [1 ]
Garg, Rishu [2 ]
Singh, Jitender [2 ]
机构
[1] Romanian Acad, Sim Stoilow Inst Math, Bucharest, Romania
[2] Guru Nanak Dev Univ, Dept Math, Amritsar 143005, India
关键词
Multivariate polynomial; non-Archimedean absolute value; Perron's irreducibility criterion; IRREDUCIBILITY CRITERIA; APOLLONIUS CIRCLES;
D O I
10.1080/00927872.2024.2377390
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide upper bounds on the total number of irreducible factors, and in particular irreducibility criteria for some classes of bivariate polynomials f(x, y) over an arbitrary field K. Our results rely on information on the degrees of the coefficients of f, and on information on the factorization of the constant term and of the leading coefficient of f, viewed as a polynomial in y with coefficients in K[x]. In particular, we provide a generalization of the bivariate version of Perron's irreducibility criterion, and similar results for polynomials in an arbitrary number of indeterminates. The proofs use non-Archimedean absolute values, that are suitable for finding information on the location of the roots of f in an algebraic closure of K(x).
引用
收藏
页码:328 / 341
页数:14
相关论文
共 50 条
  • [21] Some Results on Factorization in Integral Domains
    Bennett, Jack Robert
    Rush, David E.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2601 - 2617
  • [22] On the irreducibility of bivariate polynomials
    Stefanescu, Doru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 377 - 384
  • [23] Bivariate Order Polynomials
    Beck, Matthias
    Farahmand, Maryam
    Karunaratne, Gina
    Ruiz, Sandra Zuniga
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 921 - 931
  • [24] Bivariate Order Polynomials
    Matthias Beck
    Maryam Farahmand
    Gina Karunaratne
    Sandra Zuniga Ruiz
    Graphs and Combinatorics, 2020, 36 : 921 - 931
  • [25] ON BIVARIATE BALANCING POLYNOMIALS
    Asci, Mustafa
    Yakar, Merve
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 46 (01): : 97 - 108
  • [26] SOME NEW RESULTS ON THE BIVARIATE NORMAL INTEGRAL
    RUBEN, H
    BIOMETRICS, 1959, 15 (04) : 641 - 641
  • [27] Some asymptotic results on bivariate quantile splines
    He, XM
    Portnoy, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 91 (02) : 341 - 349
  • [28] Some general results for moments in bivariate distributions
    Gupta, Ramesh C.
    Tajdari, Mohammad
    Bresinsky, Henrik
    METRIKA, 2008, 68 (02) : 173 - 187
  • [29] Some general results for moments in bivariate distributions
    Ramesh C. Gupta
    Mohammad Tajdari
    Henrik Bresinsky
    Metrika, 2008, 68 : 173 - 187
  • [30] SOME PROPERTIES OF BIVARIATE GAUSSIAN FIBONACCI AND LUCAS p-POLYNOMIALS
    Gurel, Esref
    Asci, Mustafa
    ARS COMBINATORIA, 2018, 137 : 123 - 139