Generating new spacetimes through Zermelo navigation

被引:0
|
作者
Li, Zonghai [1 ]
Jia, Junji [2 ,3 ]
机构
[1] Wuhan Univ, Ctr Astrophys, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Ctr Astrophys, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Sch Phys & Technol, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
关键词
D O I
10.1103/PhysRevD.109.084035
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Zermelo navigation is not only a fundamental tool in Finsler geometry but also a fundamental approach to the geometrization of dynamics in physics. In this paper, we consider the Zermelo navigation problem on optical Riemannian space and, via Zermelo/Randers/spacetime triangle, and explore the generation of new spacetimes from preexisting ones. Whether the Randers metric has reversible geodesics corresponds to the presence of time-reversal symmetry in the generated spacetime. In cases where the Randers metric has reversible geodesics, we utilize a radial vector field to generate new static spacetimes from existing ones. For example, we can generate Schwarzschild, Rindler, de Sitter, and Schwarzschild-de Sitter spacetimes from flat spacetime. In fact, the Zermelo navigation method allows for the derivation of a variety of static spacetimes from flat spacetime. For multiparameter spacetimes, they can be generated through various navigation paths. However, for some spacetimes, not all navigation paths may exist. In the second scenario, when the Randers metric does not have reversible geodesics, we employ a rotational vector field to transform nonflat static metrics into slowly rotating spacetimes. Alternatively, using a mixed vector field, we generate slowly rotating spacetimes starting from flat spacetime. We provide examples of generating Kerr spacetimes and Kerr-de Sitter spacetimes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Zermelo navigation on Riemannian manifolds
    Bao, D
    Robles, C
    Shen, ZM
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 66 (03) : 377 - 435
  • [2] Zermelo navigation in the quantum brachistochrone
    Russell, Benjamin
    Stepney, Susan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (11)
  • [3] Zermelo Navigation Problem in Geometry
    Dusek, Zdenek
    NASE MORE, 2018, 65 (04): : 250 - 253
  • [4] Zermelo Navigation Problem with State Constraints
    Cherkasov, Oleg
    Malykh, Egor
    Smirnova, Nina
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 103 - 112
  • [5] A Zermelo navigation problem with a vortex singularity
    Bonnard, Bernard
    Cots, Olivier
    Wembe, Boris
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [6] Regarding a problem of Zermelo navigation.
    Mania, B
    MATHEMATISCHE ANNALEN, 1937, 113 : 584 - 599
  • [7] Solution to the Quantum Zermelo Navigation Problem
    Brody, Dorje C.
    Meier, David M.
    PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [8] On generalization of Zermelo navigation problem on Riemannian manifolds
    Kopacz, Piotr
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (04)
  • [9] Kropina metrics and Zermelo navigation on Riemannian manifolds
    Ryozo Yoshikawa
    Sorin V. Sabau
    Geometriae Dedicata, 2014, 171 : 119 - 148
  • [10] Kropina metrics and Zermelo navigation on Riemannian manifolds
    Yoshikawa, Ryozo
    Sabau, Sorin V.
    GEOMETRIAE DEDICATA, 2014, 171 (01) : 119 - 148