Comparative transcriptome analysis reveals key genes and pathways in response to Alternaria alternata apple pathotype infection

被引:4
|
作者
Liu, Kai [1 ]
Liang, Zhaolin [1 ]
Yang, An [1 ]
Yan, Jiadi [1 ]
Cong, Peihua [1 ]
Han, Xiaolei [1 ]
Zhang, Caixia [1 ]
机构
[1] Chinese Acad Agr Sci, Res Inst Pomol, Key Lab Hort Crop Germplasm Utilizat Minist Agr &, Xingcheng 125100, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Apple; Transcriptome; Alternaria alternata apple pathotype; Infection; Defense response; SALICYLIC-ACID; JASMONIC ACID; RNA-SEQ; RESISTANCE; ETHYLENE; CULTIVARS; EXPANSION; ALIGNMENT; GENOTYPES; FAMILY;
D O I
10.1016/j.hpj.2023.02.008
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Apple leaf spot, caused by the Alternaria alternata apple pathotype (AAAP), is an important fungal disease of apple. To understand the molecular basis of resistance and pathogenesis in apple leaf spot, the transcriptomes of two apple cultivars 'Hanfu' (HF) (resistant) and 'Golden Delicious'(GD) (susceptible) were analyzed at 0, 6, 18, 24 and 48 h after AAAP inoculation by RNA-Seq. At each time point, a large number of signi ficantly differentially expressed genes (DEGs) were screened between AAAP-inoculated and uninoculated apple leaves. Analysis of the common DEGs at four time points revealed signi ficant differences in the resistance of 'HF' and 'GD' apple to AAAP infection. RLP, RNL, and JA signal-related genes were upregulated in both cultivars to restrict AAAP development. However, genes encoding CNLs, TNLs, WRKYs, and AP2s were only activated in 'HF' as part of the resistance response, of which, some play major roles in the regulation of ET and SA signal transduction. Further analysis showed that many DEGs with opposite expression trends in the two hosts may play important regulatory roles in response to AAAP infection. Transient expression of one such gene MdERF110 in 'GD' apple leaves improved AAAP resistance. Collectively, this study highlights the reasons for differential resistance to AAAP infection between 'HF' and 'GD' apples which can theoretically assist the molecular breeding of disease-resistant apple crops.
引用
收藏
页码:641 / 656
页数:16
相关论文
共 50 条
  • [11] Identification of microRNA transcriptome in apple response to Alternaria alternata infection and evidence that miR390 is negative regulator of defense response
    Qin, Lihuan
    Zhao, Lin
    Wu, Chao
    Qu, Shenchun
    Wang, Sanhong
    SCIENTIA HORTICULTURAE, 2021, 289
  • [12] Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata
    Kan, Jialiang
    Liu, Tingli
    Ma, Na
    Li, Hui
    Li, Xiaogang
    Wang, Jinyan
    Zhang, Baolong
    Chang, Youhong
    Lin, Jing
    PLOS ONE, 2017, 12 (09):
  • [13] Integrative transcriptome and WGCNA analysis reveal key genes mainly in response to Alternaria alternata in Populus simonii x P. nigra
    Liu, Siyuan
    Dai, Lijuan
    Qu, Guanzheng
    Lu, Xinming
    Pan, Hong
    Fu, Xiaoyu
    Dong, Airong
    Yang, Libin
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [14] Comparative Physiological and Transcriptome Analysis Reveals Potential Pathways and Specific Genes Involved in Waterlogging Tolerance in Apple Rootstocks
    Zhang, Kunxi
    Chen, Xiaofei
    Yuan, Penghao
    Song, Chunhui
    Song, Shangwei
    Jiao, Jian
    Wang, Miaomiao
    Hao, Pengbo
    Zheng, Xianbo
    Bai, Tuanhui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [15] Comparative transcriptome analysis reveals genes and pathways associated with anthocyanins in strawberry
    Lin, Yuanxiu
    Wang, Chunyan
    Wang, Xiao
    Yue, Maolan
    Zhang, Yunting
    Chen, Qing
    Li, Mengyao
    Luo, Ya
    Zhang, Yong
    Wang, Yan
    Wang, Xiaorong
    Tang, Haoru
    JOURNAL OF BERRY RESEARCH, 2021, 11 (02) : 317 - 332
  • [16] Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties
    Niu, Yufei
    Li, Jingyu
    Sun, Fanting
    Song, Taiyu
    Han, Baojia
    Liu, Zijie
    Su, Peisen
    GENOMICS, 2023, 115 (05)
  • [17] Transcriptome Analysis Reveals Key Genes and Pathways Associated with Metastasis in Breast Cancer
    Li, Wei
    Liu, Jianling
    Zhang, Bin
    Bie, Qingli
    Qian, Hui
    Xu, Wenrong
    ONCOTARGETS AND THERAPY, 2020, 13 : 323 - 335
  • [18] Transcriptome analysis reveals key genes and pathways for prickle development in Zanthoxylum armatum
    Wang, Yi
    Jiang, Yuhui
    Feng, Fayu
    Guo, Yongqing
    Hao, Jiabo
    Huyan, Li
    Du, Chunhua
    Xu, Liang
    Lu, Bin
    HELIYON, 2024, 10 (05)
  • [19] Transcriptomics analysis and candidate genes associated with Xinjiang jujube fruits in response to Alternaria alternata infection
    Fan, Yingying
    Zhang, Ruili
    Liu, Xiaoqin
    Ma, Yushan
    Wang, Yan
    Liu, Fengjuan
    He, Weizhong
    Wu, Aibo
    Wang, Cheng
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2022, 122
  • [20] Transcriptome analysis reveals key genes and pathways associated with piglet fetal mummification
    Wang, Shujie
    Wu, Pingxian
    Wang, Kai
    Ji, Xiang
    Chen, Dong
    Jiang, Anan
    Liu, Yihui
    Xiao, Weihang
    Jiang, Yanzhi
    Zhu, Li
    Xu, Xu
    Li, Mingzhou
    Li, Xuewei
    Tang, Guoqing
    GENOME, 2021, 64 (12) : 1029 - 1040