Evaluation of streamflow predictions from LSTM models in water- and energy-limited regions in the United States
被引:6
|
作者:
Khand, Kul
论文数: 0引用数: 0
h-index: 0
机构:
US Geol Survey USGS, Earth Resources Observat & Sci EROS Ctr, ASRC Fed Data Solut, Sioux Falls, SD 57198 USAUS Geol Survey USGS, Earth Resources Observat & Sci EROS Ctr, ASRC Fed Data Solut, Sioux Falls, SD 57198 USA
Khand, Kul
[1
]
Senay, Gabriel B.
论文数: 0引用数: 0
h-index: 0
机构:
US Geol Survey, EROS Ctr, North Cent Climate Adaptat Sci Ctr, Ft Collins, CO USAUS Geol Survey USGS, Earth Resources Observat & Sci EROS Ctr, ASRC Fed Data Solut, Sioux Falls, SD 57198 USA
Senay, Gabriel B.
[2
]
机构:
[1] US Geol Survey USGS, Earth Resources Observat & Sci EROS Ctr, ASRC Fed Data Solut, Sioux Falls, SD 57198 USA
[2] US Geol Survey, EROS Ctr, North Cent Climate Adaptat Sci Ctr, Ft Collins, CO USA
The application of Long Short-Term Memory (LSTM) models for streamflow predictions has been an area of rapid development, supported by advancements in computing technology, increasing availability of spatiotemporal data, and availability of historical data that allows for training data-driven LSTM models. Several studies have focused on improving the performance of LSTM models; however, few studies have assessed the applicability of these LSTM models across different hydroclimate regions. This study investigated the single-basin trained local (one model for each basin), multi-basin trained regional (one model for one region), and grand (one model for several regions) models for predicting daily streamflow in water-limited Great Basin (18 basins) and energylimited New England (27 basins) regions in the United States using the CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) data set. The results show a general pattern of higher accuracy in daily streamflow predictions from the regional model when compared to local or grand models for most basins in the New England region. For the Great Basin region, local models provided smaller errors for most basins and substantially lower for those basins with relatively larger errors from the regional and grand models. The evaluation of one-layer and three-layer LSTM network architectures trained with 1-day lag information indicates that the addition of model complexity by increasing the number of layers may not necessarily increase the model skill for improving streamflow predictions. Findings from our study highlight the strengths and limitations of LSTM models across contrasting hydroclimate regions in the United States, which could be useful for local and regional scale decisions using standalone or potential integration of data-driven LSTM models with physics-based hydrological models.
机构:
Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USAMichigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
Mayer, Adam
Ryder, Stacia
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Sociol, Ft Collins, CO 80523 USAMichigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
机构:
Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Xu, Tongren
Guo, Zhixia
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Guo, Zhixia
Xia, Youlong
论文数: 0引用数: 0
h-index: 0
机构:
NCEP, EMC, IM Syst Grp, College Pk, MD USABeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Xia, Youlong
Ferreira, Vagner G.
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Inst Surveying & Engn, Sch Earth Sci & Engn, Jiangning Campus, Nanjing 211100, Jiangsu, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Ferreira, Vagner G.
Liu, Shaomin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Liu, Shaomin
Wang, Kaicun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Wang, Kaicun
Yao, Yunjun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Yao, Yunjun
Zhang, Xiaojuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Zhang, Xiaojuan
Zhao, Changsen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Water Sci, Beijing Key Lab Urban Hydrol Cycle & Sponge City, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
机构:
Mississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Shantharam, Arvind
Poti, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
NOAA Natl Ctr Coastal Ocean Sci, Silver Spring, MD USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Poti, Matthew
Winship, Arliss
论文数: 0引用数: 0
h-index: 0
机构:
NOAA Natl Ctr Coastal Ocean Sci, Silver Spring, MD USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Winship, Arliss
Lau, Yee
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Lau, Yee
Coleman, Heather
论文数: 0引用数: 0
h-index: 0
机构:
NOAA Deep Sea Coral Res & Technol Program, Silver Spring, MD USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Coleman, Heather
Weissman, Danielle
论文数: 0引用数: 0
h-index: 0
机构:
NOAA Fisheries, Off Habitat Conservat, Bethesda, MD USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Weissman, Danielle
Eaton, Renee
论文数: 0引用数: 0
h-index: 0
机构:
NOAA Fisheries, Off Habitat Conservat, Bethesda, MD USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Eaton, Renee
Mcguinn, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Mcguinn, Robert
Cebrian, Just
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Northern Gulf Inst, Stennis, MS USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA
Cebrian, Just
Hourigan, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
NOAA Deep Sea Coral Res & Technol Program USA, Silver Spring, MD USAMississippi State Univ, Northern Gulf Inst, NOAA Natl Ctr Environm Informat, Stennis, MS 39762 USA