Significant duration prediction of seismic ground motions using machine learning algorithms

被引:0
|
作者
Li, Xinle [1 ]
Gao, Pei [1 ]
机构
[1] Dalian Minzu Univ, Coll Civil Engn, Dalian 116600, Liaoning, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 02期
关键词
EQUATIONS;
D O I
10.1371/journal.pone.0299639
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Prediction of Heart Disease Using Machine Learning Algorithms
    Krishnan, Santhana J.
    Geetha, S.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [22] Prediction of Breast Cancer using Machine Learning Algorithms
    Mangal, Anuj
    Jain, Vinod
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 464 - 466
  • [23] Student Performance Prediction Using Machine Learning Algorithms
    Ahmed, Esmael
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2024, 2024
  • [24] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [25] Diabetes Disease Prediction Using Machine Learning Algorithms
    Lyngdoh, Arwatki Chen
    Choudhury, Nurul Amin
    Moulik, Soumen
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 517 - 521
  • [26] Heart Disease Prediction Using Machine Learning Algorithms
    Malavika, G.
    Rajathi, N.
    Vanitha, V.
    Parameswari, P.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 24 - 27
  • [27] Alzheimer Disease Prediction using Machine Learning Algorithms
    Neelaveni, J.
    Devasana, M. S. Geetha
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 101 - 104
  • [28] House Price Prediction Using Machine Learning Algorithms
    Vineeth, Naalla
    Ayyappa, Maturi
    Bharathi, B.
    SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 425 - 433
  • [29] Prediction of Dental Implants Using Machine Learning Algorithms
    Alharbi, Mafawez T.
    Almutiq, Mutiq M.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [30] Heart Attack Prediction using Machine Learning Algorithms
    Laxamana, Romeo Jousef A.
    Vale, Joan Marie
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1428 - 1436