Open-ICL: Open-Set Modulation Classification via Incremental Contrastive Learning

被引:1
|
作者
Yang, Chen [1 ]
Feng, Zhixi [1 ]
Yang, Shuyuan [1 ]
Pan, Qiukai [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation; Contrastive learning; Universal Serial Bus; Task analysis; Feature extraction; Training; Reliability; Adaptive threshold; incremental contrastive learning; modulation classification; moving intersection; open set; signal novelty; NETWORK;
D O I
10.1109/TNNLS.2024.3414942
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Open-set modulation classification (OMC) of signals is a challenging task for handling "unknown" modulation types that are not included in the training dataset. This article proposes an incremental contrastive learning method for OMC, called Open-ICL, to accurately identify unknown modulation types of signals. First, a dual-path 1-D network (DONet) with a classification path (CLP) and a contrast path (COP) is designed to learn discriminative signal features cooperatively. In the COP, the deep features of the input signal are compared with the semantic feature centers (SFCs) of known classes calculated from the network, to infer its signal novelty. An unknown signal bank (USB) is defined to store unknown signals, and a novel moving intersection algorithm (MIA) is proposed to dynamically select reliable unknown signals for the USB. The "unknown" instances, together with SFCs, are continuously optimized and updated, facilitating the process of incremental learning. Furthermore, a dynamic adaptive threshold (DAT) strategy is proposed to enable Open-ICL to adaptively learn changing signal distributions. Extensive experiments are performed on two benchmark datasets, and the results demonstrate the effectiveness of Open-ICL for OMC.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Contrastive Learning of Semantic Concepts for Open-set Cross-domain Retrieval
    Agarwal, Aishwarya
    Karanam, Srikrishna
    Srinivasan, Balaji Vasan
    Banerjee, Biplab
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 4104 - 4113
  • [22] Uncertainty-Aware Face Embedding With Contrastive Learning for Open-Set Evaluation
    Ahn, Kyeongjin
    Lee, Seungeon
    Han, Sungwon
    Low, Cheng Yaw
    Cha, Meeyoung
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 7176 - 7186
  • [23] Language-Enhanced Dual-Level Contrastive Learning Network for Open-Set Hyperspectral Image Classification
    Qin, Boao
    Feng, Shou
    Zhao, Chunhui
    Li, Wei
    Tao, Ran
    Zhou, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [24] Entropic Open-Set Active Learning
    Safaei, Bardia
    Vibashan, V. S.
    de Melo, Celso M.
    Patel, Vishal M.
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4686 - 4694
  • [25] Learning Placeholders for Open-Set Recognition
    Zhou, Da-Wei
    Ye, Han-Jia
    Zhan, De-Chuan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4399 - 4408
  • [26] Active Learning for Open-set Annotation
    Ning, Kun-Peng
    Zhao, Xun
    Li, Yu
    Huang, Sheng-Jun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 41 - 49
  • [27] Novelty Recognition: Fish Species Classification via Open-Set Recognition
    Cordova, Manuel
    Torres, Ricardo da Silva
    van Helmond, Aloysius
    Kootstra, Gert
    SENSORS, 2025, 25 (05)
  • [28] Open-Set Fault Diagnosis via Supervised Contrastive Learning With Negative Out-of-Distribution Data Augmentation
    Peng, Peng
    Lu, Jiaxun
    Xie, Tingyu
    Tao, Shuting
    Wang, Hongwei
    Zhang, Heming
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2463 - 2473
  • [29] OpenGAN: Open-Set Recognition via Open Data Generation
    Kong, Shu
    Ramanan, Deva
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 793 - 802
  • [30] Electrical Load Classification with Open-Set Recognition
    Nemeth, Daniel Istvan
    Tornai, Kalman
    ENERGIES, 2023, 16 (02)