When xURLLC Meets NOMA: A Stochastic Network Calculus Perspective

被引:2
|
作者
Chen, Yuang [1 ]
Lu, Hancheng [1 ]
Qin, Langtian [1 ]
Deng, Yansha [2 ]
Nallanathan, Arumugam [3 ]
机构
[1] Univ Sci & Technol China, Dept EEIS, Hefei, Anhui, Peoples R China
[2] Kings Coll London, Dept Engn, London, England
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, Commun Syst Res CSR Grp, London, England
基金
美国国家科学基金会;
关键词
Tail; NOMA; Delays; Resource management; Reliability; Probability; Network architecture;
D O I
10.1109/MCOM.020.2300156
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The advent of next-generation ultra-reliable and low-latency communications (xURLLC) presents stringent and unprecedented requirements for key performance indicators (KPls). As a disruptive technology, non-orthogonal multiple access (NOMA) harbors the potential to fulfill these stringent KPls essential for xURLLC. However, the immaturity of research on the tail distributions of these KPls significantly impedes the application of NOMA to xURLLC. Stochastic network calculus (SNC), as a potent methodology, is leveraged to provide dependable theoretical insights into tail distribution analysis and statistical QoS provisioning (SQP). In this article, we develop a NOMA-assisted uplink xURLLC network architecture that incorporates an SNC-based SQP theoretical framework (SNC-SQP) to support tail distribution analysis in terms of delay, age-of-information (AoI), and reliability. Based on SNC-SQP, an SQP-driven power optimization problem is proposed to minimize transmit power while guaranteeing xURLLC's KPls on delay, AoI, reliability, and power consumption. Extensive simulations validate our proposed theoretical framework and demonstrate that the proposed power allocation scheme significantly reduces uplink transmit power and outperforms conventional schemes in terms of SQP performance.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
  • [1] Statistical QoS Provisioning Analysis and Performance Optimization in xURLLC-Enabled Massive MU-MIMO Networks: A Stochastic Network Calculus Perspective
    Chen, Yuang
    Lu, Hancheng
    Qin, Langtian
    Zhang, Chenwu
    Chen, Chang Wen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 8044 - 8058
  • [2] Of Kernels and Queues: when network calculus meets analytic combinatorics
    Bouillard, Anne
    Comte, Celine
    de Panafieu, Elie
    Mathieu, Fabien
    PROCEEDINGS OF THE 2018 INTERNATIONAL WORKSHOP ON NETWORK CALCULUS AND APPLICATIONS (NETCAL2018), VOL 2, 2018, : 49 - 54
  • [3] When Crowdsourcing Meets Mobile Sensing: A Social Network Perspective
    Chen, Pin-Yu
    Cheng, Shin-Ming
    Ting, Pai-Shun
    Lien, Chia-Wei
    Chu, Fu-Jen
    IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (10) : 157 - 163
  • [4] On applying stochastic network calculus
    Chuang LIN
    Yiping DENG
    Yuming JIANG
    Frontiers of Computer Science, 2013, 7 (06) : 924 - 942
  • [5] On applying stochastic network calculus
    Chuang Lin
    Yiping Deng
    Yuming Jiang
    Frontiers of Computer Science, 2013, 7 : 924 - 942
  • [6] A basic Stochastic network calculus
    Jiang, Yuming
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2006, 36 (04) : 123 - 134
  • [7] On applying stochastic network calculus
    Lin, Chuang
    Deng, Yiping
    Jiang, Yuming
    FRONTIERS OF COMPUTER SCIENCE, 2013, 7 (06) : 924 - 942
  • [8] A Guide to the Stochastic Network Calculus
    Fidler, Markus
    Rizk, Amr
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (01): : 92 - 105
  • [9] The Stochastic Network Calculus Methodology
    Kadhim, Deah J.
    Jobbar, Saba Q.
    Liu, Wei
    Cheng, Wenqing
    COMPUTER AND INFORMATION SCIENCE 2009, 2009, 208 : 169 - 178
  • [10] When THz-NOMA Meets Holographic Reconfigurable Intelligent Surfaces
    Chrysologou, Athanasios P.
    Boulogeorgos, Alexandros-Apostolos A.
    Chatzidiamantis, Nestor D.
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (09) : 2516 - 2520