TCN-Inception: Temporal Convolutional Network and Inception modules for sensor-based Human Activity Recognition

被引:9
|
作者
Al-qaness, Mohammed A. A. [1 ,2 ]
Dahou, Abdelghani [3 ,4 ]
Trouba, Nafissa Toureche [4 ]
Abd Elaziz, Mohamed [5 ,8 ,9 ,10 ]
Helmi, Ahmed M. [6 ,7 ]
机构
[1] Zhejiang Normal Univ, Coll Phys & Elect Informat Engn, Jinhua 321004, Peoples R China
[2] Zhejiang Optoelect Res Inst, Jinhua 321004, Peoples R China
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua 321004, Peoples R China
[4] Univ Ahmed DRAIA, Math & Comp Sci Dept, Adrar 01000, Algeria
[5] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
[6] Zagazig Univ, Fac Engn, Comp & Syst Engn Dept, Zagazig 44519, Egypt
[7] Buraydah Private Coll, Engn & Informat Technol Coll, Comp Engn Dept, Buraydah 51418, Saudi Arabia
[8] Galala Univ, Fac Comp Sci & Engn, Suze 435611, Egypt
[9] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman 346, U Arab Emirates
[10] Middle East Univ, MEU Res Unit, Amman 11831, Jordan
关键词
Human activity recognition; Smart homes; Internet of things (IoT); Deep learning; CNN; Inception; NEURAL-NETWORK; INTELLIGENCE;
D O I
10.1016/j.future.2024.06.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The field of Human Activity Recognition (HAR) has experienced a significant surge in interest due to its essential role across numerous areas, including human-computer interaction (HCI), healthcare, smart homes, and various Internet of Things (IoT) applications. The power of deep learning methods in performing various classification tasks, including HAR, has been well-demonstrated. In light of this, our paper presents an efficient HAR system developed using a unique deep-learning architecture called TCN-Inception, which is designed for multivariate time series tasks like HAR data, by combining Temporal Convolutional Network (TCN) and Inception modules. The network starts with an Inception module that uses parallel convolution layers with various kernel sizes for feature extraction. It then includes a TCN module with dilated convolutions to grasp extended temporal patterns. Features are merged from different channels, and the use of residual connections and batch normalization improves training and deepens the architecture. We use four public datasets, UCI-HAR, MobiAct, Daphnet, and DSADS to assess the performance of the TCN-Inception model, and it obtains an average accuracy of 96.15%, 98.86%, 92.63%, and 99.50% for each dataset, respectively. Moreover, we compare the TCN-Inception to several deep learning frameworks to verify its performance. Finally, we implement an ablation study using several architectural configurations of the TCN-Inception model.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [41] A Study on Diffusion Modelling For Sensor-based Human Activity Recognition
    Shao, Shuai
    Sanchez, Victor
    2023 11TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS, IWBF, 2023,
  • [42] Wearable Sensor-Based Human Activity Recognition with Transformer Model
    Dirgova Luptakova, Iveta
    Kubovcik, Martin
    Pospichal, Jiri
    SENSORS, 2022, 22 (05)
  • [43] Multiple Sclerosis Lesion Segmentation in Brain MRI Using Inception Modules Embedded in a Convolutional Neural Network
    Ansari, Shahab U.
    Javed, Kamran
    Qaisar, Saeed Mian
    Jillani, Rashad
    Haider, Usman
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [44] RepMobile: A MobileNet-Like Network With Structural Reparameterization for Sensor-Based Human Activity Recognition
    Yu, Jianglai
    Zhang, Lei
    Cheng, Dongzhou
    Bu, Can
    Wu, Hao
    Song, Aiguo
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 24224 - 24237
  • [45] Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [46] A New Framework for Smartphone Sensor-Based Human Activity Recognition Using Graph Neural Network
    Mondal, Riktim
    Mukherjee, Debadyuti
    Singh, Pawan Kumar
    Bhateja, Vikrant
    Sarkar, Ram
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11461 - 11468
  • [47] Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
    Sakorn Mekruksavanich
    Anuchit Jitpattanakul
    Scientific Reports, 13
  • [48] Human Activity Recognition Based On Convolutional Neural Network
    Xu, Wenchao
    Pang, Yuxin
    Yang, Yanqin
    Liu, Yanbo
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 165 - 170
  • [49] Human activity recognition using temporal convolutional neural network architecture
    Andrade-Ambriz, Yair A.
    Ledesma, Sergio
    Ibarra-Manzano, Mario-Alberto
    Oros-Flores, Marvella, I
    Almanza-Ojeda, Dora-Luz
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [50] Human Activity Recognition Based on Convolutional Neural Network
    Coelho, Yves
    Rangel, Luara
    dos Santos, Francisco
    Frizera-Neto, Anselmo
    Bastos-Filho, Teodiano
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 247 - 252