LMACL: Improving Graph Collaborative Filtering with Learnable Model Augmentation Contrastive Learning

被引:0
|
作者
Liu, Xinru [1 ]
Hao, Yongjing [2 ]
Zhao, Lei [2 ]
Liu, Guanfeng [3 ]
Sheng, Victor S. [4 ]
Zhao, Pengpeng [2 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Suzhou, Jiangsu, Peoples R China
[3] Macquarie Univ, Sydney, NSW, Australia
[4] Texas Tech Univ, Lubbock, TX USA
关键词
Recommender systems; collaborative filtering; graph neural network; contrastive learning;
D O I
10.1145/3657302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph collaborative filtering (GCF) has achieved exciting recommendation performance with its ability to aggregate high-order graph structure information. Recently, contrastive learning (CL) has been incorporated into GCF to alleviate data sparsity and noise issues. However, most of the existing methods employ random or manual augmentation to produce contrastive views that may destroy the original topology and amplify the noisy effects. We argue that such augmentation is insufficient to produce the optimal contrastive view, leading to suboptimal recommendation results. In this article, we proposed a LearnableModel Augmentation Contrastive Learning (LMACL) framework for recommendation, which effectively combines graph-level and node-level collaborative relations to enhance the expressiveness of collaborative filtering (CF) paradigm. Specifically, we first use the graph convolution network (GCN) as a backbone encoder to incorporate multihop neighbors into graph-level original node representations by leveraging the high-order connectivity in user-item interaction graphs. At the same time, we treat the multi-head graph attention network (GAT) as an augmentation view generator to adaptively generate high-quality node-level augmented views. Finally, joint learning endows the end-to-end training fashion. In this case, the mutual supervision and collaborative cooperation of GCN and GAT achieves learnable model augmentation. Extensive experiments on several benchmark datasets demonstrate that LMACL provides a significant improvement over the strongest baseline in terms of Recall and NDCG by 2.5%-3.8% and 1.6%-4.0%, respectively. Our model implementation code is available at https://github.com/LiuHsinx/LMACL.
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [21] Improving hypergraph convolution network collaborative filtering with feature crossing and contrastive learning
    Yuan, Huanhuan
    Yang, Jian
    Huang, Jiajin
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10220 - 10233
  • [22] Signal Contrastive Enhanced Graph Collaborative Filtering for Recommendation
    Li, Zhi-Yuan
    Chen, Man-Sheng
    Gao, Yuefang
    Wang, Chang-Dong
    DATA SCIENCE AND ENGINEERING, 2023, 8 (03) : 318 - 328
  • [23] Improving hypergraph convolution network collaborative filtering with feature crossing and contrastive learning
    Huanhuan Yuan
    Jian Yang
    Jiajin Huang
    Applied Intelligence, 2022, 52 : 10220 - 10233
  • [24] Signal Contrastive Enhanced Graph Collaborative Filtering for Recommendation
    Zhi-Yuan Li
    Man-Sheng Chen
    Yuefang Gao
    Chang-Dong Wang
    Data Science and Engineering, 2023, 8 : 318 - 328
  • [25] MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning
    Gong, Xumeng
    Yang, Cheng
    Shi, Chuan
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4284 - 4292
  • [26] Video Representation Learning with Graph Contrastive Augmentation
    Zhang, Jingran
    Xu, Xing
    Shen, Fumin
    Yao, Yazhou
    Shao, Jie
    Zhu, Xiaofeng
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3043 - 3051
  • [27] Graph Contrastive Learning with Adaptive Augmentation for Recommendation
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Yu, Jiadi
    Tang, Feilong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 590 - 605
  • [28] AutoGCL: Automated Graph Contrastive Learning via Learnable View Generators
    Yin, Yihang
    Wang, Qingzhong
    Huang, Siyu
    Xiong, Haoyi
    Zhang, Xiang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8892 - 8900
  • [29] Collaborative Filtering Algorithm Based on Contrastive Learning and Filtering Components
    Shen, Ziqi
    Huang, Wenjie
    Luo, Xin
    Zhang, Xiankun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 100 - 111
  • [30] MD-GCCF: Multi-view deep graph contrastive learning for collaborative filtering
    Li, Xinlu
    Tian, Yujie
    Dong, Bingbing
    Ji, Shengwei
    NEUROCOMPUTING, 2024, 590