Fuzzy graph convolutional network for hyperspectral image classification

被引:20
|
作者
Xu, Jindong [1 ]
Li, Kang [1 ,2 ]
Li, Ziyi [1 ]
Chong, Qianpeng [1 ]
Xing, Haihua [3 ]
Xing, Qianguo [4 ]
Ni, Mengying [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Quan Cheng Lab, Jinan 250100, Peoples R China
[3] Hainan Normal Univ, Coll Informat Sci & Technol, Haikou 571158, Peoples R China
[4] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph convolutional network; Hyperspectral image; Image classification; Fuzzy logic; Graph construction method;
D O I
10.1016/j.engappai.2023.107280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
-Graph convolutional network (GCN) has attracted much attention in the field of hyperspectral image classification for its excellent feature representation and convolution on arbitrarily structured non-Euclidean data. However, most state-of-the-art methods build a graph utilize the distance measure, which makes it challenging to fully characterize the complex relationship of hyperspectral remote sensing data. Moreover, the hyperspectral image usually has uncertainty introduced by the problems of the spectral variability and noise interference. This article uses fuzzy theory to optimize the GCN and thus solve the uncertainty problem in hyperspectral images, and presents a novel fuzzy graph convolutional network (F-GCN) for hyperspectral image classification. By calculating the fuzzy similarity of samples, a robust graph is first built rather than using the traditional Euclidean distance method, which allows a better representation of the complex relationship between hyperspectral remote sensing data. Furthermore, the proposed network introduces fuzzy layers into the model to cope with the ambiguity of the hyperspectral image. Finally, the classification results for three real-world hyperspectral data sets to show its feasibility and effectiveness in hyperspectral image classification.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Li, Guanghui
    Dai, Chenglong
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3679 - 3695
  • [32] Multiscale Short and Long Range Graph Convolutional Network for Hyperspectral Image Classification
    Zhu, Wenxiang
    Zhao, Chunhui
    Feng, Shou
    Qin, Boao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network
    Wan, Sheng
    Gong, Chen
    Zhong, Ping
    Pan, Shirui
    Li, Guangyu
    Yang, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 597 - 612
  • [34] Dual Graph Convolutional Network for Hyperspectral Image Classification With Limited Training Samples
    He, Xin
    Chen, Yushi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] Two-Branch Deeper Graph Convolutional Network for Hyperspectral Image Classification
    Yu, Linzhou
    Peng, Jiangtao
    Chen, Na
    Sun, Weiwei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [36] Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification
    Mou, Lichao
    Lu, Xiaoqiang
    Li, Xuelong
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12): : 8246 - 8257
  • [37] Hyperspectral Image Classification with Localized Graph Convolutional Filtering
    Pu, Shengliang
    Wu, Yuanfeng
    Sun, Xu
    Sun, Xiaotong
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [38] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [39] Hypergraph convolutional network for hyperspectral image classification
    Xu, Qin
    Lin, Jing
    Jiang, Bo
    Liu, Jinpei
    Luo, Bin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21863 - 21882
  • [40] Convolutional Transformer Network for Hyperspectral Image Classification
    Zhao, Zhengang
    Hu, Dan
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19