Effect of Ge inclusion on surface morphologies and the growth mechanism of Cu 2 (Sn 1-x Ge x )S 3 films grown by the sulfurization of Ge/Cu/ SnS precursors

被引:0
|
作者
Kanai, Ayaka [1 ]
Tanaka, Kunihiko [1 ]
Sugiyama, Mutsumi [2 ]
机构
[1] Nagaoka Univ Technol, Dept Elect Elect & Informat Engn, 1603-1 Kamitomioka, Nagaoka, Niigata 9402188, Japan
[2] Tokyo Univ Sci, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
Copper tin germanium sulfides; Thin films; Growth mechanism; Absorption materials; Solar cells; THIN-FILM; SOLAR; CU2SNS3;
D O I
10.1016/j.tsf.2024.140410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of the [Ge]/([Ge]+[Sn]): x ratio on the increase in the surface roughness and growth mechanism of Cu2Sn1-xGexS3 (CTGS) films were examined as a first step toward realizing high-efficiency CTGS solar cells. The surface roughness of the CTGS films did not change significantly up to 450 degrees C during the sulfurization of the Ge/ Cu/SnS precursors, whereas that of the CTGS films increased beyond 500 degrees C. Further, Cu2GeS3 (CGS) and germanium sulfide (GeS) were observed via X-ray diffraction; these CGS and GeS compounds remained in the upper layer up to 540 degrees C, and CTGS was formed at 560 degrees C by the reaction with Cu2SnS3. The increased surface roughness in the CTGS films is attributed to the larger CTGS grain size that increases the x ratios of CTGS and the re-evaporation of vapor atoms (e.g., GeS) that generates a high vapor pressure on the surface of films by forming CGS and GeS compounds. These results confirm that the formation of CGS and GeS compounds, and the formation of dense grains in the CTGS films caused by the deposition of lower x ratios in the CTGS films are effective measures for improving the overall surface roughness.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Excitonic transitions in (GaAs)1-x(Ge2)x/GaAs multilayers grown by magnetron sputtering
    Salazar-Hernandez, B
    Vidal, MA
    Navarro-Contreras, H
    Asomoza, R
    Merkulov, A
    APPLIED PHYSICS LETTERS, 1998, 72 (01) : 94 - 96
  • [32] Ce3Cu4X4(X=Sn,Ge)的晶场效应研究
    路莹
    湛江师范学院学报, 2008, 29 (06) : 20 - 23
  • [33] Epitaxial growth of Ge1-xSnx films with x up to 0.14 grown on Ge(00l) at low temperature
    陶平
    黄磊
    Cheng H H
    王焕华
    吴小山
    Chinese Physics B, 2014, 23 (08) : 595 - 598
  • [34] Epitaxial growth of Ge1-xSnx films with x up to 0.14 grown on Ge (00l) at low temperature
    Tao Ping
    Huang Lei
    Cheng, H. H.
    Wang Huan-Hua
    Wu Xiao-Shan
    CHINESE PHYSICS B, 2014, 23 (08)
  • [35] GROWTH OF (GAAS)1-X(GE2)X BY METALORGANIC CHEMICAL-VAPOR-DEPOSITION
    VERNON, SM
    SANFACON, MM
    AHRENKIEL, RK
    JOURNAL OF ELECTRONIC MATERIALS, 1994, 23 (02) : 147 - 151
  • [36] Alloyed (ZnS)x(Cu2SnS3)1-x and (CuInS2)x(Cu2SnS3)1-x nanocrystals with arbitrary composition and broad tunable band gaps
    Liu, Qinghui
    Zhao, Zechen
    Lin, Yuhan
    Guo, Peng
    Li, Shenjie
    Pan, Daocheng
    Ji, Xiangling
    CHEMICAL COMMUNICATIONS, 2011, 47 (03) : 964 - 966
  • [37] Ultrathin films of Ge on the Si(100)2x1 surface
    Kamaratos, M.
    Sotiropoulos, A. K.
    Vlachos, D.
    SURFACE AND INTERFACE ANALYSIS, 2018, 50 (02) : 198 - 204
  • [38] HETEROEPITAXY OF SI FILMS ON A GE(100)-2X1 SURFACE
    KAWABATA, H
    UEBA, H
    TATSUYAMA, C
    JOURNAL OF APPLIED PHYSICS, 1989, 66 (02) : 634 - 639
  • [39] Investigation of the Ho2X3-Cu2X-ZX2 (X = S, Se; Z = Si, Ge) systems
    Lychmanyuk, O. S.
    Gulay, L. D.
    Olekseyuk, I. D.
    Stepien-Damm, J.
    Daszkiewicz, M.
    Pietraszko, A.
    POLISH JOURNAL OF CHEMISTRY, 2007, 81 (03) : 353 - 367
  • [40] FORMATION OF KONDO CLOUDS IN U(SN(1-X)M(X))(3) COMPOUNDS (M=AL, GA, GE)
    SCHEIDT, EW
    FRAUNBERGER, G
    RIEGER, JJ
    MIELKE, A
    KIM, WW
    STEWART, GR
    JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 218 (01) : 5 - 8