共 50 条
Ode to an ODE
被引:0
|作者:
Choromanski, Krzysztof
[1
]
Davis, Jared Quincy
[2
,3
]
Likhosherstov, Valerii
[4
]
Song, Xingyou
[5
]
Slotine, Jean-Jacques
[6
]
Varley, Jacob
[1
]
Lee, Honglak
[5
]
Weller, Adrian
[4
,7
]
Sindhwani, Vikas
机构:
[1] Google, Robotics, New York, NY 10011 USA
[2] DeepMind, London, England
[3] Stanford Univ, Stanford, CA USA
[4] Univ Cambridge, Cambridge, England
[5] Google Brain, Mountain View, CA USA
[6] MIT, Cambridge, MA USA
[7] Alan Turing Inst, London, England
来源:
基金:
英国工程与自然科学研究理事会;
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the orthogonal group O-(d). This nested system of two flows, where the parameter-flow is constrained to lie on the compact manifold, provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem which is intrinsically related to training deep neural network architectures such as Neural ODEs. Consequently, it leads to better downstream models, as we show on the example of training reinforcement learning policies with evolution strategies, and in the supervised learning setting, by comparing with previous SOTA baselines. We provide strong convergence results for our proposed mechanism that are independent of the depth of the network, supporting our empirical studies. Our results show an intriguing connection between the theory of deep neural networks and the field of matrix flows on compact manifolds.
引用
收藏
页数:13
相关论文