GRIL: A 2-parameter Persistence Based Vectorization for Machine Learning

被引:0
|
作者
Xin, Cheng [1 ]
Mukherjee, Soham [1 ]
Samaga, Shreyas N. [1 ]
Dey, Tamal K. [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
1-parameter persistent homology, a cornerstone in Topological Data Analysis (TDA), studies the evolution of topological features such as connected components and cycles hidden in data. It has been applied to enhance the representation power of deep learning models, such as Graph Neural Networks (GNNs). To enrich the representations of topological features, here we propose to study 2-parameter persistence modules induced by bifiltration functions. In order to incorporate these representations into machine learning models, we introduce a novel vector representation called Generalized Rank Invariant Landscape (GRIL) for 2-parameter persistence modules. We show that this vector representation is 1-Lipschitz stable and differentiable with respect to underlying filtration functions and can be easily integrated into machine learning models to augment encoding topological features. We present an algorithm to compute the vector representation efficiently. We also test our methods on synthetic and benchmark graph datasets, and compare the results with previous vector representations of 1-parameter and 2parameter persistence modules. Further, we augment GNNs with GRIL features and observe an increase in performance indicating that GRIL can capture additional features enriching GNNs. We make the complete code for the proposed method available at https://github.com/soham0209/mpmlgraph.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] 2-PARAMETER FAMILY OF BIB DESIGNS
    RAO, MB
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1970, 32 (SEP): : 259 - 264
  • [32] ONE 2-PARAMETER SINGULAR PROBLEM
    HAJIEV, HA
    NADIROV, AA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1982, (03): : 44 - 49
  • [33] 2-PARAMETER HARNESSES AND THE WIENER PROCESS
    DOZZI, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04): : 507 - 514
  • [34] UNBONDED BEAMS ON A 2-PARAMETER FOUNDATION
    TING, EC
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1973, 296 (02): : 77 - 89
  • [35] Stability of 2-Parameter Persistent Homology
    Andrew J. Blumberg
    Michael Lesnick
    Foundations of Computational Mathematics, 2024, 24 : 385 - 427
  • [36] ON CHANGE OF MEASURE FOR 2-PARAMETER PROCESSES
    MISHURA, YS
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1986, 30 (03) : 650 - 651
  • [37] FILTRATIONS FOR THE 2-PARAMETER JUMP PROCESS
    ALHUSSAINI, A
    ELLIOTT, RJ
    JOURNAL OF MULTIVARIATE ANALYSIS, 1985, 16 (01) : 118 - 139
  • [38] 2-PARAMETER SCALING IN THE WIGNER ENSEMBLE
    FEINGOLD, M
    GIOLETTA, A
    IZRAILEV, FM
    MOLINARI, L
    PHYSICAL REVIEW LETTERS, 1993, 70 (19) : 2936 - 2939
  • [39] 2-PARAMETER SEMI-MARTINGALES
    FOLLMER, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (01): : 61 - 64
  • [40] 2-PARAMETER SEMI-MARTINGALES
    STOICA, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 45 (03): : 257 - 268