Neutrosophic geometric distribution: Data generation under uncertainty and practical applications

被引:0
|
作者
Aslam, Muhammad [1 ]
Albassam, Mohammed [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 215511, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
simulation; algorithm; neutrosophic data; classical statistics; industry;
D O I
10.3934/math.2024796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces the geometric distribution in the context of neutrosophic statistics. The research outlines the essential properties of this new distribution and introduces novel algorithms for generating imprecise geometric data. The study explores the practical applications of this distribution in the industry, highlighting differences in data generated under deterministic and indeterminate conditions using detailed tables, simulation studies, and real - world applications. The results indicate that the level of uncertainty has a substantial impact on data generation from the geometric distribution. These findings suggest updating classical statistical algorithms to better handle the generation of imprecise data. Therefore, decision - makers should exercise caution when using data from the geometric distribution in uncertain environments.
引用
收藏
页码:16436 / 16452
页数:17
相关论文
共 50 条
  • [31] Data-driven uncertainty analysis of distribution networks including photovoltaic generation
    Gruosso, Giambattista
    Maffezzoni, Paolo
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 121
  • [32] The Exponentiated Lindley Geometric Distribution with Applications
    Peng, Bo
    Xu, Zhengqiu
    Wang, Min
    ENTROPY, 2019, 21 (05)
  • [33] SOME GEOMETRIC APPLICATIONS OF THE BETA DISTRIBUTION
    FRANKL, P
    MAEHARA, H
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1990, 42 (03) : 463 - 474
  • [34] A bivariate generalized geometric distribution with applications
    Gomez-Deniz, E.
    Ghitany, M. E.
    Gupta, Ramesh C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (11) : 5453 - 5465
  • [35] An Extension of the Geometric Distribution with Properties and Applications
    Chakraborty, Subrata
    Ong, Seng Huat
    Biswas, Aniket
    AUSTRIAN JOURNAL OF STATISTICS, 2022, : 124 - 142
  • [36] A Bivariate Geometric Distribution with Applications to Reliability
    Krishna, Hare
    Pundir, Pramendra Singh
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (07) : 1079 - 1093
  • [37] The Kumaraswamy Weibull Geometric Distribution with Applications
    Rasekhi, Mahdi
    Alizadeh, Morad
    Hamedani, G. G.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (02) : 347 - 366
  • [38] On the Rayleigh-geometric distribution with applications
    Okorie, Idika E.
    Akpanta, Anthony C.
    Ohakwe, Johnson
    Chikezie, David C.
    Onyemachi, Chris U.
    HELIYON, 2019, 5 (08)
  • [39] On the Turing estimator in capture-recapture count data under the geometric distribution
    Anan, Orasa
    Bohning, Dankmar
    Maruotti, Antonello
    METRIKA, 2019, 82 (02) : 149 - 172
  • [40] Data-to-Text Generation Improves Decision-Making Under Uncertainty
    Gkatzia, Dimitra
    Lemon, Oliver
    Rieser, Verena
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2017, 12 (03) : 10 - 17