Counting triangles in graphs without vertex disjoint odd cycles

被引:0
|
作者
Hou, Jianfeng [1 ]
Yang, Caihong [1 ]
Zeng, Qinghou [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Tur & aacute; n number; Extremal graph; Cycle; GENERALIZED TURAN PROBLEMS; MAXIMUM NUMBER; PENTAGONS; COPIES;
D O I
10.1016/j.disc.2024.114015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two graphs H and F, the maximum possible number of copies of H in an F-free graph on n vertices is denoted by ex(n, H, F). Let l <middle dot> F denote t vertex disjoint copies of F. Gy6ri and Li (2012) obtained results on ex(n, C-3, C2k+1), which was further improved by Alon and Shikhelman (2016). In this paper, we determine the exact value of ex(n, C-3, B <middle dot> C2k+1) and its extremal graph for all l >= 2 and large n. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Games without repetitions on graphs with vertex disjoint cycles
    DziechcinskaHalamoda, Z
    Michael, J
    Szwiec, W
    [J]. ARCHIV DER MATHEMATIK, 1997, 69 (03) : 254 - 258
  • [2] Games without repetitions on graphs with vertex disjoint cycles
    Z. Dziechcińska-Halamoda
    J. Michael
    W. Szwiec
    [J]. Archiv der Mathematik, 1997, 69 : 254 - 258
  • [3] Vertex Colorings of Graphs Without Short Odd Cycles
    Dudek, Andrzej
    Ramadurai, Reshma
    [J]. JOURNAL OF GRAPH THEORY, 2011, 68 (03) : 255 - 264
  • [4] Edge-maximal graphs without disjoint odd cycles
    Bataineh, Mohammed S.
    Jaradat, Mohammed M. M.
    Vetrik, Tomas
    [J]. ARS COMBINATORIA, 2019, 143 : 247 - 253
  • [5] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Zou, Qingsong
    Li, Jiawang
    Ji, Zizheng
    [J]. GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1355 - 1361
  • [6] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Qingsong Zou
    Jiawang Li
    Zizheng Ji
    [J]. Graphs and Combinatorics, 2020, 36 : 1355 - 1361
  • [7] Graphs without two vertex-disjoint S-cycles
    Kang, Minjeong
    Kwon, O-joung
    Lee, Myounghwan
    [J]. DISCRETE MATHEMATICS, 2020, 343 (10)
  • [8] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 75 - 82
  • [9] Extremal spectral results of planar graphs without vertex-disjoint cycles
    Fang, Longfei
    Lin, Huiqiu
    Shi, Yongtang
    [J]. JOURNAL OF GRAPH THEORY, 2024, 106 (03) : 496 - 524
  • [10] Tools for counting odd cycles in graphs
    Hare, Donovan R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 139 : 163 - 192