Validation of Noninvasive Detection of Hyperkalemia by Artificial Intelligence-Enhanced Electrocardiography in High Acuity Settings

被引:0
|
作者
Harmon, David M. [1 ,2 ]
Liu, Kan [2 ]
Dugan, Jennifer [2 ]
Jentzer, Jacob C. [2 ]
Attia, Zachi I. [2 ]
Friedman, Paul A. [2 ]
Dillon, John J. [3 ]
机构
[1] Mayo Clin, Dept Internal Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Cardiovasc Dis, Rochester, MN USA
[3] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
关键词
clinical nephrology; electrolytes; fluid; electrolyte; and acid-base disorders; patient-centered care; ATRIAL-FIBRILLATION; SERUM POTASSIUM; HEART-FAILURE; ASSOCIATION; MORTALITY; THERAPY; SCREEN;
D O I
10.2215/CJN.0000000000000483
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Artificial intelligence (AI) electrocardiogram (ECG) analysis can enable detection of hyperkalemia. In this validation, we assessed the algorithm's performance in two high acuity settings. Methods An emergency department (ED) cohort (February to August 2021) and a mixed intensive care unit (ICU) cohort (August 2017 to February 2018) were identified and analyzed separately. For each group, pairs of laboratory-collected potassium and 12 lead ECGs obtained within 4 hours of each other were identified. The previously developed AI ECG algorithm was subsequently applied to leads 1 and 2 of the 12 lead ECGs to screen for hyperkalemia (potassium >6.0 mEq/L). Results The ED cohort (N=40,128) had a mean age of 60 years, 48% were male, and 1% (N=351) had hyperkalemia. The area under the curve (AUC) of the AI-enhanced ECG (AI-ECG) to detect hyperkalemia was 0.88, with sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and positive likelihood ratio (LR+) of 80%, 80%, 3%, 99.8%, and 4.0, respectively, in the ED cohort. Low-eGFR (<30 ml/min) subanalysis yielded AUC, sensitivity, specificity, PPV, NPV, and LR+ of 0.83, 86%, 60%, 15%, 98%, and 2.2, respectively, in the ED cohort. The ICU cohort (N=2636) had a mean age of 65 years, 60% were male, and 3% (N=87) had hyperkalemia. The AUC for the AI-ECG was 0.88 and yielded sensitivity, specificity, PPV, NPV, and LR+ of 82%, 82%, 14%, 99%, and 4.6, respectively in the ICU cohort. Low-eGFR subanalysis yielded AUC, sensitivity, specificity, PPV, NPV, and LR+ of 0.85, 88%, 67%, 29%, 97%, and 2.7, respectively in the ICU cohort. Conclusions The AI-ECG algorithm demonstrated a high NPV, suggesting that it is useful for ruling out hyperkalemia, but a low PPV, suggesting that it is insufficient for treating hyperkalemia.
引用
收藏
页码:952 / 958
页数:7
相关论文
共 50 条
  • [11] Artificial Intelligence-Enhanced Electrocardiogram for the Early Detection of Cardiac
    Grogan, Martha
    Lopez-Jimenez, Francisco
    Cohen-Shelly, Michal
    Dispenzieri, Angela
    Attia, Zachi, I
    Abou Ezzedine, Omar F.
    Lin, Grace
    Kapa, Suraj
    Borgeson, Daniel D.
    Friedman, Paul A.
    Murphree, Dennis H., Jr.
    MAYO CLINIC PROCEEDINGS, 2021, 96 (11) : 2768 - 2778
  • [12] Prediction of mortality, future arrhythmia and cardiovascular disease: an artificial intelligence-enhanced electrocardiography platform
    Sau, A.
    Pastika, L.
    Sieliwonczyk, E.
    Patlatzoglou, K.
    Ribeiro, A. H.
    Mcgurk, K.
    Zeidaabadi, B.
    Zhang, H.
    Macierzanka, K.
    Peters, N. S.
    Ware, J. S.
    Ribeiro, A. L. P.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [13] Artificial Intelligence-Enhanced Breast MRI
    Lo Gullo, Roberto
    Marcus, Eric
    Huayanay, Jorge
    Eskreis-Winkler, Sarah
    Thakur, Sunitha
    Teuwen, Jonas
    Pinker, Katja
    INVESTIGATIVE RADIOLOGY, 2024, 59 (03) : 230 - 242
  • [14] Assessment of Disease Status and Treatment Response With Artificial Intelligence-Enhanced Electrocardiography in Obstructive Hypertrophic Cardiomyopathy
    Tison, Geoffrey H.
    Siontis, Konstantinos C.
    Abreau, Sean
    Attia, Zachi
    Agarwal, Priyanka
    Balasubramanyam, Aarthi
    Li, Yunfan
    Sehnert, Amy J.
    Edelberg, Jay M.
    Friedman, Paul A.
    Olgin, Jeffrey E.
    Noseworthy, Peter A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (10) : 1032 - 1034
  • [15] A comparison of artificial intelligence-enhanced electrocardiography approaches for the prediction of time to mortality using electrocardiogram images
    Sau, Arunashis
    Zeidaabadi, Boroumand
    Patlatzoglou, Konstantinos
    Pastika, Libor
    Ribeiro, Antonio H.
    Sabino, Ester
    Peters, Nicholas S.
    Ribeiro, Antonio Luiz P.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2025, 6 (02): : 180 - 189
  • [16] Artificial intelligence-enhanced electrocardiography predicts 10-year risk of atherosclerotic cardiovascular disease
    Zhang, H.
    Sau, A.
    Patlatzoglou, K.
    Pastika, L.
    Sieliwonczyk, E.
    Gurnani, M.
    Zeidaabadi, B.
    Macierzanka, K.
    Barker, J.
    Liang, Y.
    Peters, N. S.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [17] Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease
    Pastika, L.
    Sau, A.
    Patlatzoglou, K.
    Sieliwonczyk, E.
    Ribeiro, A. H.
    Mcgurk, K. A.
    Khan, S.
    Mandic, D.
    Scott, W. R.
    Ware, J. S.
    Peters, N. S.
    Ribeiro, A. L. P.
    Kramer, D.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [18] Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease
    Pastika, Libor
    Sau, Arunashis
    Patlatzoglou, Konstantinos
    Sieliwonczyk, Ewa
    Ribeiro, Antonio H.
    McGurk, Kathryn A.
    Khan, Sadia
    Mandic, Danilo
    Scott, William R.
    Ware, James S.
    Peters, Nicholas S.
    Ribeiro, Antonio Luiz P.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [19] ARTIFICIAL INTELLIGENCE-ENHANCED ELECTROCARDIOGRAPHY IDENTIFIES PATIENTS WITH NORMAL EJECTION FRACTION AT RISK OF WORSE OUTCOMES
    Naser, Jwan A.
    Lee, Eunjung
    Lopez-Jimenez, Francisco
    Noseworthy, Peter
    Latif, Omar
    Friedman, Paul A.
    Lin, Grace
    Oh, Jae K.
    Scott, Christopher
    Pislaru, Sorin
    Attia, Zachi Itzhak
    Pellikka, Patricia A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2572 - 2572
  • [20] Artificial intelligence-enhanced electrocardiography predicts 10-year risk of atherosclerotic cardiovascular disease
    Zhang, H.
    Sau, A.
    Patlatzoglou, K.
    Pastika, L.
    Sieliwonczyk, E.
    Gurnani, M.
    Zeidaabadi, B.
    Macierzanka, K.
    Barker, J.
    Liang, Y.
    Peters, N. S.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45