L1-PCA with Quantum Annealing

被引:0
|
作者
Tomeo, Ian [1 ]
Markopoulos, Panagiotis [2 ]
Savakis, Andreas E. [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
[2] Univ Texas San Antonio, San Antonio, TX USA
基金
美国国家科学基金会;
关键词
Dimensionality Reduction; Fault Detection; Outlier Resistance; Principle Component Analysis; Subspace Learning; COMPONENT; ALGORITHMS;
D O I
10.1117/12.3015944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal Component Analysis (PCA) is commonly used for dimensionality reduction, feature extraction, data denoising, and visualization. The L-1-PCA is known to confer robustness or a resistance to outliers in the data. In this paper, a new method for L-1-PCA is explored using quantum annealing hardware. To showcase performance increases as compared to other PCA types, results for a fault detection scenario are presented and the speedup of L-1-PCA using quantum annealing is demonstrated. Additionally, L-1-PCA has better fault detection rates than L-2-PCA when in the presence of outliers.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Improve robustness of sparse PCA by L1-norm maximization
    Meng, Deyu
    Zhao, Qian
    Xu, Zongben
    PATTERN RECOGNITION, 2012, 45 (01) : 487 - 497
  • [32] A Simple and Fast Algorithm for L1-Norm Kernel PCA
    Kim, Cheolmin
    Klabjan, Diego
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (08) : 1842 - 1855
  • [33] Quantum error mitigation in quantum annealing
    Raymond, Jack
    Amin, Mohammad H.
    King, Andrew D.
    Harris, Richard
    Bernoudy, William
    Berkley, Andrew J.
    Boothby, Kelly
    Smirnov, Anatoly
    Altomare, Fabio
    Babcock, Michael
    Baron, Catia
    Connor, Jake
    Dehn, Martin H.
    Enderud, Colin
    Hoskinson, Emile
    Huang, Shuiyuan
    Johnson, Mark W.
    Ladizinsky, Eric
    Lanting, Trevor
    Macdonald, Allison J. R.
    Marsden, Gaelen
    Molavi, Reza
    Oh, Travis
    Poulin-Lamarre, Gabriel
    Ramp, Hugh
    Rich, Chris
    Clavera, Berta Trullas
    Tsai, Nicholas
    Volkmann, Mark
    Whittaker, Jed D.
    Yao, Jason
    Heinsdorf, Niclas
    Kaushal, Nitin
    Nocera, Alberto
    Franz, Marcel
    Dziarmaga, Jacek
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [34] What Is the Optimal Annealing Schedule in Quantum Annealing
    Galindo, Oscar
    Kreinovich, Vladik
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 963 - 967
  • [35] Reverse Quantum Annealing Assisted by Forward Annealing
    Jattana, Manpreet Singh
    QUANTUM REPORTS, 2024, 6 (03): : 452 - 464
  • [36] Pulsed Quantum Annealing
    Karanikolas, Vasilios
    Kawabata, Shiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (09)
  • [37] LEARNING QUANTUM ANNEALING
    Behrman, E. C.
    Steck, J. E.
    Moustafa, M. A.
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (5-6) : 469 - 487
  • [38] Quantum annealing: an overview
    Rajak, Atanu
    Suzuki, Sei
    Dutta, Amit
    Chakrabarti, Bikas. K. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2241):
  • [39] Quantum ferromagnetic annealing
    Suzuki, Set
    Nishimori, Hidetoshi
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02): : 367 - 370
  • [40] Dissipative Quantum Annealing
    de Falco, D.
    Pertoso, E.
    Tamascelli, D.
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 : 288 - 301