Control of Microporous Structure in Conjugated Microporous Polymer Membranes for Post-Combustion Carbon Capture

被引:8
|
作者
Jia, Yuewen [1 ]
Lu, Yanqiu [1 ]
Yang, Haozhou [1 ]
Chen, Yu [2 ]
Hillman, Febrian [1 ]
Wang, Kaiyu [1 ]
Liang, Can Zeng [1 ]
Zhang, Sui [1 ,3 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Cambridge Ctr Adv Res & Educ Singapore, 1 CREATE Way, Singapore 138602, Singapore
关键词
conjugated microporous polymers; gas separation; post-combustion carbon capture; CO2; SEPARATION; GAS; ELECTROPOLYMERIZATION; NUCLEATION; ULTRATHIN; DIOXIDE; TRIALS;
D O I
10.1002/adfm.202407499
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membranes offer a potentially energy-efficient and space-saving solution to reduce CO2 emissions and combat global warming. However, engineering membranes with advanced materials for high permeance and reasonable selectivity is a pressing need. In this context, a series of carbazole-based conjugated microporous polymer (CMP) membranes are fabricated with thicknesses of a few hundred nanometers through in situ electropolymerization for post-combustion carbon capture. The findings reveal that various experimental conditions, including the monomer concentration, electric potential, and cyclic voltammetry (CV) cycling number, largely impact the polymerization degree of the carbazole-based CMP, thus influencing the mode of polymer chain packing. An optimal polymerization degree leads to a larger micropore size and a higher fractional free volume (FFV), thus allowing fast CO2 transport. The study first demonstrates the feasibility of using CMPs to fabricate thin film composite (TFC) membranes for post-combustion carbon capture and confirms the high controllability of their micropores. These insights provide instructive guidance for the future advancement of CMP applications in membrane fabrication for gas separation and other fields that require precise micropore generation and design.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Carbon-based adsorbents for post-combustion capture: a review
    Zhao, Hongyu
    Luo, Xiaona
    Zhang, Haijiao
    Sun, Nannan
    Wei, Wei
    Sun, Yuhan
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2018, 8 (01): : 11 - 36
  • [42] Advances of Post-combustion Carbon Capture Technology by Dry Sorbent
    Yi, Chang-Keun
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2010, 48 (02): : 140 - 146
  • [43] In situ knitted microporous polymer membranes for efficient CO2 capture
    Wu, Yingzhen
    Xing, Na
    Li, Sen
    Yang, Leixin
    Ren, Yanxiong
    Liu, Yutao
    Liang, Xu
    Guo, Zheyuan
    Wang, Hongjian
    Wu, Hong
    Jiang, Zhongyi
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (04) : 2126 - 2134
  • [44] Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies
    Bhown, Abhoyjit S.
    Freeman, Brice C.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (20) : 8624 - 8632
  • [45] Synthesis of conjugated microporous polymer nanotubes for polymer composites
    Xiang, Zhentao
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Yang, Baoping
    Li, An
    RSC ADVANCES, 2015, 5 (32) : 24893 - 24898
  • [46] Amine reclaiming technologies in post-combustion carbon dioxide capture
    Wang, Tielin
    Hovland, Jon
    Jens, Klaus J.
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2015, 27 : 276 - 289
  • [47] Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents
    Dawson, Robert
    Stevens, Lee A.
    Drage, Trevor C.
    Snape, Colin E.
    Smith, Martin W.
    Adams, Dave J.
    Cooper, Andrew I.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (26) : 10741 - 10744
  • [48] Market opportunities for power plants with post-combustion carbon capture
    Delarue, Erik
    Martens, Pierre
    D'haeseleer, William
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 6 : 12 - 20
  • [49] Experimental study of solar assisted post-combustion carbon capture
    Wang, Fu
    Zhao, Jun
    Li, Hao
    Li, Hailong
    Zhao, Li
    Yan, Jinyue
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2246 - 2252
  • [50] Fluorescent Actuator Based on Microporous Conjugated Polymer with Intramolecular Stack Structure
    Lee, Wang-Eun
    Jin, Young-Jae
    Park, Lee-Soon
    Kwak, Giseop
    ADVANCED MATERIALS, 2012, 24 (41) : 5604 - 5609