One-Dimensional Metal-Organic Framework for High-Efficiency Electrocatalytic Reduction of CO2 to CO

被引:4
|
作者
Lu, Jie [1 ]
Wang, Qianyu [1 ]
Jin, Zhikai [1 ]
Xiao, Yang [1 ]
Huang, Bi-Hong [1 ]
Zhang, Cai-Hong [1 ]
Yang, Gui-Zeng [1 ]
Zhou, Yi [1 ]
Ke, Fu-Sheng [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Ag-based catalyst; One-dimensional material; Crystal engineering; Electrocatalysis; CO2; reduction; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROREDUCTION; ENHANCEMENT;
D O I
10.1002/cjoc.202400420
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic reduction of CO2 to valuable products possesses huge potential to alleviate environmental and energy crisis. It is well known that Ag favors the conversion of CO2 to CO but the exposed active sites and stability are still rather limited. In this study, a novel one-dimensional Ag-based metal-organic framework (1D Ag-NIM-MOF) was successfully synthesized and used in the electrocatalytic CO2 reduction reaction (CO2RR) for the first time. As a result, the Faradaic efficiency of CO achieved 94.5% with current density of 12.5 mA<middle dot>cm(-2)in an H-type cell and 98.2% with current density of 161 mA<middle dot>cm(-2) in a flow cell at -1.0 V (vs. RHE), which stands as a new benchmark of Ag-based MOFs in the electrocatalytic CO2RR. The excellent performance of 1D Ag-NIM-MOF is attributed to its peculiar one-dimensional structure, which is beneficial for diffusion of reactants and products, and exposure of much more catalytic sites. Compared to commercial Ag nanoparticles, 1D Ag-NIM-MOF exhibits superior electrocatalytic CO2RR performance with higher catalytic activity and stability.
引用
收藏
页码:2788 / 2794
页数:7
相关论文
共 50 条
  • [31] Asymmetric Ligands of a Metal-Organic Framework on Enhanced Photocatalytic CO2 Reduction
    Li, Ke
    Ge, Sulong
    Wei, Xiaoqian
    Zou, Weixin
    Wang, Xiuwen
    Qian, Qiuhui
    Gao, Bin
    Dong, Lin
    INORGANIC CHEMISTRY, 2023, 62 (39) : 15824 - 15828
  • [32] High-Efficiency CO2/N2 Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal-Organic Framework
    Qu, Kai
    Huang, Kang
    Xu, Jipeng
    Dai, Liheng
    Wang, Yixing
    Cao, Hongyan
    Xia, Yongsheng
    Wu, Yulin
    Xu, Weiyi
    Yao, Zhizhen
    Guo, Xuhong
    Lian, Cheng
    Xu, Zhi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (49)
  • [33] CO2 photocatalytic reduction with robust and stable metal-organic framework: a review
    Mori, Ryohei
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2024, 13 (01) : 109 - 132
  • [34] Wet flue gas CO2 capture and utilization using one-dimensional metal-organic chains
    Chiu, Nan Chieh
    Loughran, Ryan P.
    Gladysiak, Andrzej
    Vismara, Rebecca
    Park, Ah-Hyung Alissa
    Stylianou, Kyriakos C.
    NANOSCALE, 2022, 14 (40) : 14962 - 14969
  • [35] Progress on Cu-based metal-organic frameworks for high-efficiency electrochemical CO2 conversion
    Kong, Can
    Jiang, Guofei
    Sheng, Yu
    Liu, YuHan
    Gao, Fei
    Liu, Fang
    Duan, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2023, 460
  • [36] Linearly bridging CO2 in a metal-organic framework
    Yi, Fei-Yan
    Jiang, Hai-Long
    Sun, Zhong-Ming
    CHEMICAL COMMUNICATIONS, 2015, 51 (40) : 8446 - 8449
  • [37] Thermodynamics of CO2 capture in metal-organic framework
    Wu, Di
    Gassensmith, Jeremiah
    McDonald, Thomas
    Guo, Xiaofeng
    Quan, Zewei
    Ushakov, Sergey
    Zhang, Peng
    Long, Jeffrey
    Navrotsky, Alexandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [38] Metal-organic framework-based single-atom catalysts for efficient electrocatalytic CO2 reduction reactions
    Ye, Junqing
    Yan, Jipeng
    Peng, Yunlei
    Li, Fuwei
    Sun, Jian
    CATALYSIS TODAY, 2023, 410 : 68 - 84
  • [39] Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction
    Che Yu-Can
    Cheng Peng-Wei
    Zhou Yi
    Ke Fu-Sheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (06) : 1005 - 1013
  • [40] Two-Dimensional Metal-Organic Framework TM Catalysts for Electrocatalytic N2 and CO2 Reduction: A Density Functional Theory Investigation
    She, Anqi
    Wang, Ming
    Li, Shuang
    Dong, Yanhua
    Wang, Dandan
    CRYSTALS, 2023, 13 (10)