Bayesian Inference-Assisted Machine Learning for Near Real-Time Jamming Detection and Classification in 5G New Radio (NR)

被引:0
|
作者
Jere, Shashank [1 ]
Wang, Ying [2 ]
Aryendu, Ishan [2 ]
Dayekh, Shehadi [3 ]
Liu, Lingjia [1 ]
机构
[1] Virginia Tech, Bradley Dept ECE, Wireless Virgnia Tech, Blacksburg, VA 24061 USA
[2] Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA
[3] Deloitte & Touche LLP, 5G Adv Connect & Edge Cyber, Dallas, TX 75201 USA
基金
美国国家科学基金会;
关键词
Jamming; 5G mobile communication; Interference; Real-time systems; Bayes methods; Computational modeling; Wireless communication; interference; network intrusion; 5G NR; O-RAN; near real-time; machine learning; reservoir computing; Bayesian network model; causal analysis and inference; SPECTRUM ACCESS; INTELLIGENCE; COEXISTENCE; NETWORKS; QOS; LTE;
D O I
10.1109/TWC.2023.3337058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increased flexibility and density of spectrum access in 5G New Radio (NR) has made jamming detection and classification a critical research area. To detect coexisting jamming and subtle interference, we introduce a Bayesian Inference-assisted machine learning (ML) methodology. Our methodology uses cross-layer Key Performance Indicator data collected on a Non-Standalone (NSA) 5G NR testbed to leverage supervised learning models, and is further assessed, calibrated, and revealed using Bayesian Network Model (BNM)-based inference. The models can operate on both instantaneous and sequential time-series data samples, achieving an Area under Curve above 0.954 for instantaneous models and above 0.988 for sequential models including the echo state network (ESN) from the Reservoir Computing (RC) family, across various jamming scenarios. The 180 ms instantaneous detection time allows for continuous tracking of the dynamic jamming condition due to UE mobility. Our approach serves as a validation method and a resilience enhancement tool for ML-based jamming detection while also enabling root cause identification for observed performance degradation. The introduced BNM-based inference proof-of-concept is successful in addressing 72.2% of the erroneous predictions of the RC-based sequential detection model caused by insufficient training data samples, thereby demonstrating its near real-time applicability in 5G NR and Beyond-5G networks.
引用
收藏
页码:7043 / 7059
页数:17
相关论文
共 50 条
  • [41] A new smart healthcare framework for real-time heart disease detection based on deep and machine learning
    Elwahsh, Haitham
    El-shafeiy, Engy
    Alanazi, Saad
    Tawfeek, Medhat A.
    [J]. PEERJ COMPUTER SCIENCE, 2021, 7
  • [42] Real-Time Error Detection in Nonlinear Control Systems Using Machine Learning Assisted State-Space Encoding
    Banerjee, Suvadeep
    Samynathan, Balavinayagam
    Abraham, Jacob A.
    Chatterjee, Abhijit
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2021, 18 (02) : 576 - 592
  • [43] Real-Time Data Transmission Optimization on 5G Remote-Controlled Units Using Deep Reinforcement Learning
    Smirnov, Nikita
    Tomforde, Sven
    [J]. ARCHITECTURE OF COMPUTING SYSTEMS, ARCS 2023, 2023, 13949 : 281 - 295
  • [44] A new machine vision real-time detection system for liquid impurities based on dynamic morphological characteristic analysis and machine learning
    Li, Xinyu
    Qiao, Tiezhu
    Pang, Yusong
    Zhang, Haitao
    Yan, Gaowei
    [J]. MEASUREMENT, 2018, 124 : 130 - 137
  • [45] Real-time high-bandwidth mm-wave 5G NR signal transmission with analog radio-over-fiber fronthaul over multi-core fiber
    Simon Rommel
    Evangelos Grivas
    Bruno Cimoli
    Delphin Dodane
    Alvaro Morales
    Evangelos Pikasis
    Jerome Bourderionnet
    Gilles Feugnet
    Juliana Barros Carvalho
    Michail Katsikis
    Konstantinos Ntontin
    Dimitrios Kritharidis
    Izabela Spaleniak
    Paul Mitchell
    Mykhaylo Dubov
    Idelfonso Tafur Monroy
    [J]. EURASIP Journal on Wireless Communications and Networking, 2021
  • [46] Real-time high-bandwidth mm-wave 5G NR signal transmission with analog radio-over-fiber fronthaul over multi-core fiber
    Rommel, Simon
    Grivas, Evangelos
    Cimoli, Bruno
    Dodane, Delphin
    Morales, Alvaro
    Pikasis, Evangelos
    Bourderionnet, Jerome
    Feugnet, Gilles
    Barros Carvalho, Juliana
    Katsikis, Michail
    Ntontin, Konstantinos
    Kritharidis, Dimitrios
    Spaleniak, Izabela
    Mitchell, Paul
    Dubov, Mykhaylo
    Tafur Monroy, Idelfonso
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [47] Deep Learning-based Smart Radio Jamming Attacks Detection on 5G V2I/V2N Communications
    Bousalem, Badre
    Silva, Vinicius F.
    Boualouache, Abdelwahab
    Langar, Rami
    Cherrier, Sylvain
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 7139 - 7144
  • [48] NEAR REAL-TIME AUTOMATED DETECTION OF SMALL HAZARDOUS LIQUID PIPELINE LEAKS USING REMOTE OPTICAL SENSING AND MACHINE LEARNING
    Araujo, Maria S.
    Siebenaler, Shane P.
    Dupont, Edmond M.
    Blaisdell, Samantha G.
    Davila, Daniel S.
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL PIPELINE CONFERENCE, 2016, VOL 3, 2017,
  • [49] Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests
    Pacheco-Pascagaza, Ana Maria
    Gou, Yaqing
    Louis, Valentin
    Roberts, John F.
    Rodriguez-Veiga, Pedro
    Bispo, Polyanna da Conceicao
    Espirito-Santo, Fernando D. B.
    Robb, Ciaran
    Upton, Caroline
    Galindo, Gustavo
    Cabrera, Edersson
    Pachon Cendales, Indira Paola
    Castillo Santiago, Miguel Angel
    Carrillo Negrete, Oswaldo
    Meneses, Carmen
    Iniguez, Marco
    Balzter, Heiko
    [J]. REMOTE SENSING, 2022, 14 (03)
  • [50] An open-source robust machine learning platform for real-time detection and classification of 2D material flakes
    Uslu, Jan-Lucas
    Ouaj, Taoufiq
    Tebbe, David
    Nekrasov, Alexey
    Bertram, Jo Henri
    Schuette, Marc
    Watanabe, Kenji
    Taniguchi, Takashi
    Beschoten, Bernd
    Waldecker, Lutz
    Stampfer, Christoph
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):