Partial Information Decomposition: Redundancy as Information Bottleneck

被引:0
|
作者
Kolchinsky, Artemy [1 ,2 ]
机构
[1] Univ Pompeu Fabra, ICREA Complex Syst Lab, Barcelona 08003, Spain
[2] Univ Tokyo, Universal Biol Inst, Tokyo 1130033, Japan
关键词
partial information decomposition; information bottleneck; rate distortion; redundancy;
D O I
10.3390/e26070546
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The partial information decomposition (PID) aims to quantify the amount of redundant information that a set of sources provides about a target. Here, we show that this goal can be formulated as a type of information bottleneck (IB) problem, termed the "redundancy bottleneck" (RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from the sources that best predict the target, without revealing which source provided the information. It can be understood as a generalization of "Blackwell redundancy", which we previously proposed as a principled measure of PID redundancy. The "RB curve" quantifies the prediction-compression tradeoff at multiple scales. This curve can also be quantified for individual sources, allowing subsets of redundant sources to be identified without combinatorial optimization. We provide an efficient iterative algorithm for computing the RB curve.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Distributed Cooperative Information Bottleneck
    Vera, Matias
    Rey Vega, Leonardo
    Piantanida, Pablo
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 709 - 713
  • [42] Perturbation Theory for the Information Bottleneck
    Ngampruetikorn, Vudtiwat
    Schwab, David J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [43] Variational Predictive Information Bottleneck
    Alemi, Alexander A.
    [J]. SYMPOSIUM ON ADVANCES IN APPROXIMATE BAYESIAN INFERENCE, VOL 118, 2019, 118
  • [44] Agglomerative multivariate information bottleneck
    Slonim, N
    Friedman, N
    Tishby, N
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 929 - 936
  • [45] Heterogeneous Graph Information Bottleneck
    Yang, Liang
    Wu, Fan
    Zheng, Zichen
    Niu, Bingxin
    Gu, Junhua
    Wang, Chuan
    Cao, Xiaochun
    Guo, Yuanfang
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1638 - 1645
  • [46] On Information Bottleneck for Gaussian Processes
    Dikshtein, Michael
    Weinberger, Nir
    Shamai , Shlomo
    [J]. 2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 546 - 551
  • [47] Information Bottleneck and Aggregated Learning
    Soflaei, Masoumeh
    Zhang, Richong
    Guo, Hongyu
    Al-Bashabsheh, Ali
    Mao, Yongyi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14807 - 14820
  • [48] The Convex Information Bottleneck Lagrangian
    Galvez, Borja Rodriguez
    Thobaben, Ragnar
    Skoglund, Mikael
    [J]. ENTROPY, 2020, 22 (01) : 98
  • [49] Information bottleneck for Gaussian variables
    Chechik, G
    Globerson, A
    Tishby, N
    Weiss, Y
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 165 - 188
  • [50] SoftCD: Solving the information bottleneck
    Falls, P
    [J]. ONLINE & CDROM REVIEW, 1998, 22 (06): : 403 - 406