A communication-efficient distributed deep learning remote sensing image change detection framework

被引:1
|
作者
Cheng, Hongquan [1 ,2 ]
Zheng, Jie [2 ]
Wu, Huayi [2 ]
Qi, Kunlun [3 ]
He, Lihua [4 ]
机构
[1] Guangdong Univ Technol, Sch Architecture & Urban Planning, Guangzhou, Peoples R China
[2] State Key Lab Informat Engn Surveying, Mapping & Remote Sensing LIESMARS, Wuhan, Peoples R China
[3] China Univ Geosci Wuhan, Sch Geog & Informat Engn, Wuhan, Peoples R China
[4] Hubei Prov Geog Natl Condit Monitoring Ctr, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Change detection; Distributed deep learning; Parallel computing; Communication compression; Staleness compensation; METAANALYSIS; NETWORK;
D O I
10.1016/j.jag.2024.103840
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the introduction of deep learning methods, the computation required for remote sensing change detection has significantly increased, and distributed computing is applied to remote sensing change detection to improve computational efficiency. However, due to the large size of deep learning models, the time-consuming gradient transfer during distributed model training weakens the acceleration effectiveness in change detection. Data communication and updates can be the bottlenecks in distributed change detection systems with limited network resources. To address the interrelated problems, we propose a communication -efficient distributed deep learning remote sensing change detection framework (CEDD-CD) based on the synchronous update architecture. The CEDD-CD integrates change detection with communication -efficient distributed gradient compression approaches, which can efficiently reduce the data volume to be transferred. In addition, for the implicit effect caused by the delay of compressed gradient update, a momentum compensation mechanism under theoretical analysis was constructed to reduce the time consumption required for model convergence and strengthen the stability of distributed training. We also designed a unified distributed change detection system architecture to reduce the complexity of distributed modeling. Experiments were conducted on three datasets; the qualitative and quantitative results demonstrate that the CEDD-CD was effective for massive remote sensing image change detection.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Slim-DP: A Multi-Agent System for Communication-Efficient Distributed Deep Learning
    Sun, Shizhao
    Chen, Wei
    Bian, Jiang
    Liu, Xiaoguang
    Liu, Tie-Yan
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 721 - 729
  • [42] An Efficient Lightweight Neural Network for Remote Sensing Image Change Detection
    Song, Kaiqiang
    Cui, Fengzhi
    Jiang, Jie
    REMOTE SENSING, 2021, 13 (24)
  • [43] Communication-Efficient Gradient Coding for Straggler Mitigation in Distributed Learning
    Kadhe, Swanand
    Koyluoglu, O. Ozan
    Ramchandran, Kannan
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2634 - 2639
  • [44] Intermittent Pulling With Local Compensation for Communication-Efficient Distributed Learning
    Wang, Haozhao
    Qu, Zhihao
    Guo, Song
    Gao, Xin
    Li, Ruixuan
    Ye, Baoliu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 779 - 791
  • [45] CE-SGD: Communication-Efficient Distributed Machine Learning
    Tao, Zeyi
    Xia, Qi
    Li, Qun
    Cheng, Songqing
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [46] Communication-Efficient Federated Learning via Quantized Compressed Sensing
    Oh, Yongjeong
    Lee, Namyoon
    Jeon, Yo-Seb
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (02) : 1087 - 1100
  • [47] Research on Remote Sensing Image Object Detection Based on Deep Learning
    Song, Xu
    Zhou, Hongyu
    Feng, Xi
    PROCEEDINGS OF THE WORLD CONFERENCE ON INTELLIGENT AND 3-D TECHNOLOGIES, WCI3DT 2022, 2023, 323 : 471 - 481
  • [48] Remote sensing image aircraft detection technology based on deep learning
    Wei, Wanjun
    Zhang, Jiuwen
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 173 - 177
  • [49] COMMUNICATION-EFFICIENT ONLINE FEDERATED LEARNING FRAMEWORK FOR NONLINEAR REGRESSION
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5228 - 5232
  • [50] Building Change Detection Using Deep Learning for Remote Sensing Images
    Wang, Chang
    Han, Shijing
    Zhang, Wen
    Miao, Shufeng
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (04): : 587 - 598