Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature

被引:0
|
作者
Jana, Nabakumar [1 ]
Bera, Samadrita [1 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
关键词
Survival signature; Maximum spacing estimator; Generalized pivotal quantity; Multicomponent system; Stress-strength reliability; STRESS-STRENGTH RELIABILITY; MULTIPLE TYPES; INFERENCE; PARAMETERS;
D O I
10.1007/s00362-024-01588-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of estimating multicomponent stress-strength reliability Rk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k,n}$$\end{document} for two-parameter inverse Weibull distributions under progressive type-II censoring is considered. We derive maximum likelihood estimator, Bayes estimator and generalised confidence interval of Rk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k,n}$$\end{document} when all parameters are unknown. We study the reliability of stress-strength system with multiple types of components using signature-based approach. When different types of random stresses are acting on a compound system, we derive MLE, maximum spacing estimator of multi-state reliability. Using generalized pivotal quantity, the generalized confidence interval and percentile bootstrap intervals of the reliability are derived. Under a common stress subjected to the system, we also derive the estimators of the reliability parameter. Different point estimators and generalized, bootstrap confidence intervals of the reliability are developed. Risk comparison of the classical and Bayes estimators is carried out using Monte-Carlo simulation. Application of the proposed estimators is shown using real-life data sets.
引用
收藏
页码:5077 / 5108
页数:32
相关论文
共 50 条
  • [41] Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach
    Okasha, Hassan M.
    El-Baz, A. H.
    Basheer, Abdulkareem M.
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2020, 21 (01) : 247 - 257
  • [42] Interval estimation of the system reliability for Weibull distribution based on ranked set sampling data
    Akgul, Fatma Gul
    Senoglu, Birdal
    Acitas, Sukru
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1404 - 1416
  • [43] Different estimation methods for the unit inverse exponentiated weibull distribution
    Hassan, Amal S.
    Alharbi, Reem S.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (02) : 191 - 213
  • [44] ESTIMATION IN INVERSE WEIBULL DISTRIBUTION BASED ON RANDOMLY CENSORED DATA
    Kumar, Kapil
    Kumar, Indrajeet
    STATISTICA, 2019, 79 (01) : 47 - 74
  • [45] Bayesian estimation of continuous change point in inverse weibull distribution
    Pandya, Mayuri
    Jadav, Prabha
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2007, 3 (02): : 589 - 595
  • [46] Inference for reliability in a multicomponent stress-strength model for a unit inverse Weibull distribution under type-II censoring
    Singh, Kundan
    Mahto, Amulya Kumar
    Tripathi, Yogesh
    Wang, Liang
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2024, 21 (02): : 147 - 176
  • [47] Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution
    Hussam, Eslam
    Sabry, Mohamed A.
    Abd El-Raouf, M. M.
    Almetwally, Ehab M.
    AXIOMS, 2023, 12 (06)
  • [48] CONFIDENCE-LIMITS FOR RELIABILITY AND TOLERANCE LIMITS IN THE INVERSE WEIBULL DISTRIBUTION
    CALABRIA, R
    PULCINI, G
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 1989, 24 (01) : 77 - 85
  • [49] RELIABILITY PAPER Ranked set sampling on estimation of P[Y < X] for inverse Weibull distribution and its applications
    Hassan, Marwa Kh
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2022, 39 (07) : 1535 - 1550
  • [50] Determination of sample size for estimation of fatigue life by using Weibull distribution in reliability tests
    Cui, WM
    Xue, HJ
    Kohda, T
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL V, PTS A AND B, 2005, 5 : 447 - 452