Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature

被引:0
|
作者
Jana, Nabakumar [1 ]
Bera, Samadrita [1 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
关键词
Survival signature; Maximum spacing estimator; Generalized pivotal quantity; Multicomponent system; Stress-strength reliability; STRESS-STRENGTH RELIABILITY; MULTIPLE TYPES; INFERENCE; PARAMETERS;
D O I
10.1007/s00362-024-01588-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of estimating multicomponent stress-strength reliability Rk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k,n}$$\end{document} for two-parameter inverse Weibull distributions under progressive type-II censoring is considered. We derive maximum likelihood estimator, Bayes estimator and generalised confidence interval of Rk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k,n}$$\end{document} when all parameters are unknown. We study the reliability of stress-strength system with multiple types of components using signature-based approach. When different types of random stresses are acting on a compound system, we derive MLE, maximum spacing estimator of multi-state reliability. Using generalized pivotal quantity, the generalized confidence interval and percentile bootstrap intervals of the reliability are derived. Under a common stress subjected to the system, we also derive the estimators of the reliability parameter. Different point estimators and generalized, bootstrap confidence intervals of the reliability are developed. Risk comparison of the classical and Bayes estimators is carried out using Monte-Carlo simulation. Application of the proposed estimators is shown using real-life data sets.
引用
收藏
页码:5077 / 5108
页数:32
相关论文
共 50 条
  • [1] Reliability Estimation in Multicomponent Stress-Strength Based on Inverse Weibull Distribution
    Shawky, Ahmed Ibrahim
    Khan, Khushnoor
    PROCESSES, 2022, 10 (02)
  • [2] Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution
    Raj Kamal Maurya
    Yogesh Mani Tripathi
    Tanmay Kayal
    Sankhya B, 2022, 84 : 364 - 401
  • [3] Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution
    Maurya, Raj Kamal
    Tripathi, Yogesh Mani
    Kayal, Tanmay
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (01): : 364 - 401
  • [4] Interval estimation of multicomponent stress-strength reliability based on inverse Weibull distribution
    Jana, Nabakumar
    Bera, Samadrita
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 191 : 95 - 119
  • [5] Using the best two-observational percentile and maximum likelihood methods in a multicomponent stress-strength system to reliability estimation of inverse Weibull distribution
    Kazem Fayyaz Heidari
    Einollah Deiri
    Ezzatallah Baloui Jamkhaneh
    Life Cycle Reliability and Safety Engineering, 2021, 10 (3) : 255 - 265
  • [6] Reliability estimation and parameter estimation for inverse Weibull distribution under different loss functions
    Yilmaz, Asuman
    Kara, Mahmut
    KUWAIT JOURNAL OF SCIENCE, 2022, 49 (01)
  • [7] Reliability Estimation of Inverse Weibull Distribution Based on Intuitionistic Fuzzy Lifetime Data
    Hu, Xue
    Ren, Haiping
    AXIOMS, 2023, 12 (09)
  • [8] BAYESIAN SHRINKAGE ESTIMATION OF SYSTEM RELIABILITY WITH WEIBULL DISTRIBUTION OF COMPONENTS
    PANDEY, M
    UPADHYAY, SK
    MICROELECTRONICS AND RELIABILITY, 1987, 27 (04): : 625 - 628
  • [9] Reliability analysis using exponentiated Weibull distribution and inverse power law
    Carlos Mendez-Gonzalez, Luis
    Alberto Rodriguez-Picon, Luis
    Valles-Rosales, Delia Julieta
    Alvarado Iniesta, Alejandro
    Quezada Carreon, Abel Eduardo
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (04) : 1219 - 1230
  • [10] Imprecise system reliability using the survival signature
    Coolen, Frank P. A.
    Coolen-Maturi, Tahani
    Aslett, Louis J. M.
    Walter, Gero
    APPLIED MATHEMATICS IN ENGINEERING AND RELIABILITY, 2016, : 207 - 214