Multi-Domain Multi-Scale Diffusion Model for Low-Light Image Enhancement

被引:0
|
作者
Shang, Kai [1 ,2 ]
Shao, Mingwen [1 ]
Wang, Chao [3 ]
Cheng, Yuanshuo [1 ]
Wang, Shuigen [4 ]
机构
[1] China Univ Petr East China, Sch Comp Sci & Technol, Beijing, Peoples R China
[2] Shandong Inst Petr & Chem Technol, Shanghai, Peoples R China
[3] Univ Technol Sydney, ReLER, AAII, Sydney, Australia
[4] Yantai IRay Technol Lt Co, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
NETWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion models have achieved remarkable progress in low-light image enhancement. However, there remain two practical limitations: (1) existing methods mainly focus on the spatial domain for the diffusion process, while neglecting the essential features in the frequency domain; (2) conventional patch-based sampling strategy inevitably leads to severe checkerboard artifacts due to the uneven overlapping. To address these limitations in one go, we propose a Multi-Domain Multi-Scale (MDMS) diffusion model for low-light image enhancement. In particular, we introduce a spatial-frequency fusion module to seamlessly integrates spatial and frequency information. By leveraging the Multi-Domain Learning (MDL) paradigm, our proposed model is endowed with the capability to adaptively facilitate noise distribution learning, thereby enhancing the quality of the generated images. Meanwhile, we propose a Multi-Scale Sampling (MSS) strategy that follows a divide-ensemble manner by merging the restored patches under different resolutions. Such a multi-scale learning paradigm explicitly derives patch information from different granularities, thus leading to smoother boundaries. Furthermore, we empirically adopt the Bright Channel Prior (BCP) which indicates natural statistical regularity as an additional restoration guidance. Experimental results on LOL and LOLv2 datasets demonstrate that our method achieves state-of-the-art performance for the low-light image enhancement task. Codes are available at https://github.com/Oliiveralien/MDMS.
引用
收藏
页码:4722 / 4730
页数:9
相关论文
共 50 条
  • [21] WMANet: Wavelet-Based Multi-Scale Attention Network for Low-Light Image Enhancement
    Xiang, Yangjun
    Hu, Gengsheng
    Chen, Mei
    Emam, Mahmoud
    IEEE ACCESS, 2024, 12 : 105674 - 105685
  • [22] Attention-based multi-scale recursive residual network for low-light image enhancement
    Wang, Kaidi
    Zheng, Yuanlin
    Liao, Kaiyang
    Liu, Haiwen
    Sun, Bangyong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2521 - 2531
  • [23] FMR-Net: a fast multi-scale residual network for low-light image enhancement
    Yuhan Chen
    Ge Zhu
    Xianquan Wang
    Yuhuai Shen
    Multimedia Systems, 2024, 30
  • [24] FMR-Net: a fast multi-scale residual network for low-light image enhancement
    Chen, Yuhan
    Zhu, Ge
    Wang, Xianquan
    Shen, Yuhuai
    MULTIMEDIA SYSTEMS, 2024, 30 (02)
  • [25] Attention-Guided Multi-Scale Feature Fusion Network for Low-Light Image Enhancement
    Cui, HengShuai
    Li, Jinjiang
    Hua, Zhen
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [26] Low-Light Image Enhancement Algorithm Based on Multi-Scale Concat Convolutional Neural Network
    Liu Weiqiang
    Zhao Peng
    Song Xiangying
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [27] Attention-based multi-scale recursive residual network for low-light image enhancement
    Kaidi Wang
    Yuanlin Zheng
    Kaiyang Liao
    Haiwen Liu
    Bangyong Sun
    Signal, Image and Video Processing, 2024, 18 : 2521 - 2531
  • [28] FBGAN: multi-scale feature aggregation combined with boosting strategy for low-light image enhancement
    Jiang, Bin
    Wang, Renjun
    Dai, Jiawu
    Li, Qiao
    Zeng, Weiyuan
    VISUAL COMPUTER, 2024, 40 (03): : 1745 - 1756
  • [29] PRINCIPLE-INSPIRED MULTI-SCALE AGGREGATION NETWORK FOR EXTREMELY LOW-LIGHT IMAGE ENHANCEMENT
    Zhang, Jiaao
    Liu, Risheng
    Ma, Long
    Zhong, Wei
    Fan, Xin
    Luo, Zhongxuan
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2638 - 2642
  • [30] FBGAN: multi-scale feature aggregation combined with boosting strategy for low-light image enhancement
    Bin Jiang
    Renjun Wang
    Jiawu Dai
    Qiao Li
    Weiyuan Zeng
    The Visual Computer, 2024, 40 : 1745 - 1756