Community Detection for Heterogeneous Multiple Social Networks

被引:0
|
作者
Zhu, Ziqing [1 ]
Yuan, Guan [1 ,2 ,3 ]
Zhou, Tao [4 ]
Cao, Jiuxin [5 ,6 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Mine Mech & Elect Equipment, Xuzhou 221116, Jiangsu, Peoples R China
[3] Minist Educ, Engn Res Ctr, Digitizat Mine, Xuzhou 221116, Jiangsu, Peoples R China
[4] Nanjing Tech Univ, Coll Comp & Informat Engn, Nanjing 211816, Peoples R China
[5] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[6] Purple Mt Labs, Nanjing 211111, Peoples R China
来源
关键词
Social networking (online); Multiplexing; Topology; Blogs; Nonhomogeneous media; Detection algorithms; Symmetric matrices; Clustering; community detection; data mining; matrix factorization; social network;
D O I
10.1109/TCSS.2024.3399784
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The community plays a crucial role in understanding user behavior and network characteristics in social networks. Some users can use multiple social networks at once for a variety of objectives. These users are called overlapping users who bridge different social networks. Detecting communities across multiple social networks is vital for interaction mining, information diffusion, and behavior migration analysis among networks. This article presents a community detection method based on nonnegative matrix trifactorization for multiple heterogeneous social networks, which formulates a common consensus matrix to represent the global fused community. Specifically, the proposed method involves creating adjacency matrices based on network structure and content similarity, followed by alignment matrices that distinguish overlapping users in different social networks. With the generated alignment matrices, the method could enhance the fusion degree of the global community by detecting overlapping user communities across networks. The effectiveness of the proposed method is evaluated with new metrics on Twitter, Instagram, and Tumblr datasets. The results of the experiments demonstrate its superior performance in terms of community quality and community fusion.
引用
收藏
页码:6966 / 6981
页数:16
相关论文
共 50 条
  • [21] Evolutionary Community Detection in Social Networks
    He, Tiantian
    Chan, Keith C. C.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1496 - 1503
  • [22] Hidden community detection in social networks
    He, Kun
    Li, Yingru
    Soundarajan, Sucheta
    Hoperoft, John E.
    INFORMATION SCIENCES, 2018, 425 : 92 - 106
  • [23] Community detection for emerging social networks
    Zhan, Qianyi
    Zhang, Jiawei
    Yu, Philip
    Xie, Junyuan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2017, 20 (06): : 1409 - 1441
  • [24] Hybrid Community Detection in Social Networks
    Du, Hongwei
    Wu, Weili
    Cui, Lei
    Du, Ding-Zhu
    MODELS, ALGORITHMS AND TECHNOLOGIES FOR NETWORK ANALYSIS, NET 2014, 2016, 156 : 127 - 133
  • [25] Community Detection in Multiplex Social Networks
    Nguyen, Hung T.
    Dinh, Thang N.
    Tam Vu
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2015, : 654 - 659
  • [26] Community detection for emerging social networks
    Qianyi Zhan
    Jiawei Zhang
    Philip Yu
    Junyuan Xie
    World Wide Web, 2017, 20 : 1409 - 1441
  • [27] Overlapping Community Detection in Social Networks
    Dhouioui, Zeineb
    Akaichi, Jalel
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [28] Predicting Community Health Through Heterogeneous Social Networks
    Nguyen H.
    Le H.
    SN Computer Science, 4 (3)
  • [29] Random matrix improved community detection in heterogeneous networks
    Ali, Hafiz Tiomoko
    Couillet, Romain
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1385 - 1389
  • [30] Community Detection in Social Networks Considering Social Behaviors
    Wang, Yingkui
    Jin, Di
    He, Dongxiao
    Musial, Katarzyna
    Dang, Jianwu
    IEEE ACCESS, 2022, 10 : 109969 - 109982