Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics with an open-source Python']Python package

被引:0
|
作者
Berrisford, Liam J. [1 ,2 ,3 ]
Menezes, Ronaldo [1 ,4 ]
机构
[1] Univ Exeter, Dept Comp Sci, BioComplex Lab, Exeter, England
[2] Univ Exeter, Dept Math, Exeter, England
[3] Univ Exeter, UKRI Ctr Doctoral Training Environm Intelligence, Exeter, England
[4] Univ Fed Ceara, Dept Comp Sci, Fortaleza, Brazil
基金
英国工程与自然科学研究理事会;
关键词
Ambient air pollution; Forecasting; Interventions; Stakeholder engagement; EXPOSURE; ADULTS; HEALTH; IMPACT; MODEL;
D O I
10.1016/j.envsoft.2024.106131
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ambient air pollution is a pervasive issue with wide-ranging effects on human health, ecosystem vitality, and economic structures. Utilizing data on ambient air pollution concentrations, researchers can perform comprehensive analyses to uncover the multifaceted impacts of air pollution across society. To this end, we introduce Environmental tal Insights, , an open-source Python package designed to democratize access to air pollution concentration data. This tool enables users to easily retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions. Moreover, Environmental Insights includes a suite of tools aimed at facilitating the dissemination of analytical findings and enhancing user engagement through dynamic visualizations. This comprehensive approach ensures that the package caters to the diverse needs of individuals looking to explore and understand air pollution trends and their implications. Code repository clickable link: Environmental Insights Github Home Page.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] mfapy: An open-source Python']Python package for 13C-based metabolic flux analysis
    Matsuda, Fumio
    Maeda, Kousuke
    Taniguchi, Takeo
    Kondo, Yuya
    Yatabe, Futa
    Okahashi, Nobuyuki
    Shimizu, Hiroshi
    [J]. METABOLIC ENGINEERING COMMUNICATIONS, 2021, 13
  • [32] QmeQ 1.0: An open-source Python']Python package for calculations of transport through quantum dot devices
    Kirsanskas, Gediminas
    Pedersen, Jonas Nyvold
    Karlstrom, Olov
    Leijnse, Martin
    Wacker, Andreas
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 : 317 - 342
  • [33] Mass-Suite: a novel open-source python']python package for high-resolution mass spectrometry data analysis
    Hu, Ximin
    Mar, Derek
    Suzuki, Nozomi
    Zhang, Bowei
    Peter, Katherine T.
    Beck, David A. C.
    Kolodziej, Edward P.
    [J]. JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [34] Sleep: An Open-Source Python']Python Software for Visualization, Analysis, and Staging of Sleep Data
    Combrisson, Etienne
    Vallat, Raphael
    Eichenlaub, Jean-Baptiste
    O'Reilly, Christian
    Lajnef, Tarek
    Guillot, Aymeric
    Ruby, Perrine M.
    Jerbi, Karim
    [J]. FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [35] Pyomo.DOE: An open-source package for model-based design of experiments in Python']Python
    Wang, Jialu
    Dowling, Alexander W.
    [J]. AICHE JOURNAL, 2022, 68 (12)
  • [36] Precision-medicine-toolbox: An open-source python']python package for the quantitative medical image analysis
    Lavrova, Elizaveta
    Primakov, Sergey
    Salahuddin, Zohaib
    Beuque, Manon
    Verstappen, Damon
    Woodruff, Henry C.
    Lambin, Philippe
    [J]. SOFTWARE IMPACTS, 2023, 16
  • [37] Open-source python']python module for automated preprocessing of near infrared spectroscopic data
    Torniainen, Jari
    Afara, Isaac O.
    Prakash, Mithilesh
    Sarin, Jaakko K.
    Stenroth, Lauri
    Toyras, Juha
    [J]. ANALYTICA CHIMICA ACTA, 2020, 1108 : 1 - 9
  • [38] Silicone v1.0.0: an open-source Python']Python package for inferring missing emissions data for climate change research
    Lamboll, Robin D.
    Nicholls, Zebedee R. J.
    Kikstra, Jarmo S.
    Meinshausen, Malte
    Rogelj, Joeri
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (11) : 5259 - 5275
  • [39] PyMoDAQ: An open-source Python']Python-based software for modular data acquisition
    Weber, S. J.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [40] K Nearest Neighbor OveRsampling approach: An open source python']python package for data augmentation
    Islam, Ashhadul
    Belhaouari, Samir Brahim
    Rehman, Atiq Ur
    Bensmail, Halima
    [J]. SOFTWARE IMPACTS, 2022, 12