Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics with an open-source Python']Python package

被引:0
|
作者
Berrisford, Liam J. [1 ,2 ,3 ]
Menezes, Ronaldo [1 ,4 ]
机构
[1] Univ Exeter, Dept Comp Sci, BioComplex Lab, Exeter, England
[2] Univ Exeter, Dept Math, Exeter, England
[3] Univ Exeter, UKRI Ctr Doctoral Training Environm Intelligence, Exeter, England
[4] Univ Fed Ceara, Dept Comp Sci, Fortaleza, Brazil
基金
英国工程与自然科学研究理事会;
关键词
Ambient air pollution; Forecasting; Interventions; Stakeholder engagement; EXPOSURE; ADULTS; HEALTH; IMPACT; MODEL;
D O I
10.1016/j.envsoft.2024.106131
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ambient air pollution is a pervasive issue with wide-ranging effects on human health, ecosystem vitality, and economic structures. Utilizing data on ambient air pollution concentrations, researchers can perform comprehensive analyses to uncover the multifaceted impacts of air pollution across society. To this end, we introduce Environmental tal Insights, , an open-source Python package designed to democratize access to air pollution concentration data. This tool enables users to easily retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions. Moreover, Environmental Insights includes a suite of tools aimed at facilitating the dissemination of analytical findings and enhancing user engagement through dynamic visualizations. This comprehensive approach ensures that the package caters to the diverse needs of individuals looking to explore and understand air pollution trends and their implications. Code repository clickable link: Environmental Insights Github Home Page.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SigMT: An open-source Python']Python package for magnetotelluric data processing
    Ajithabh, K. S.
    Patro, Prasanta K.
    [J]. COMPUTERS & GEOSCIENCES, 2023, 171
  • [2] pyActigraphy: Open-source python']python package for actigraphy data visualization and analysis
    Hammad, Gregory
    Reyt, Mathilde
    Beliy, Nikita
    Baillet, Marion
    Deantoni, Michele
    Lesoinne, Alexia
    Muto, Vincenzo
    Schmidt, Christina
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)
  • [3] pyActigraphy, an open-source python']python package for actigraphy data visualisation and analysis
    Hammad, G.
    Reyt, M.
    Beliy, N.
    Baillet, M.
    Deantoni, M.
    Lesoinne, A.
    Muto, V.
    Schmidt, C.
    [J]. JOURNAL OF SLEEP RESEARCH, 2020, 29 : 291 - 292
  • [4] OpenSoundscape: An open-source bioacoustics analysis package for Python']Python
    Lapp, Sam
    Rhinehart, Tessa
    Freeland-Haynes, Louis
    Khilnani, Jatin
    Syunkova, Alexandra
    Kitzes, Justin
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (09): : 2321 - 2328
  • [5] HYSUPP: AN OPEN-SOURCE HYPERSPECTRAL UNMIXING PYTHON']PYTHON PACKAGE
    Rasti, Behnood
    Zouaoui, Alexandre
    Mairal, Julien
    Chanussot, Jocelyn
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1134 - 1137
  • [6] RamanSPy: An Open-Source Python']Python Package for Integrative Raman Spectroscopy Data Analysis
    Georgiev, Dimitar
    Pedersen, Simon Vilms
    Xie, Ruoxiao
    Fernandez-Galiana, Alvaro
    Stevens, Molly M.
    Barahona, Mauricio
    [J]. ANALYTICAL CHEMISTRY, 2024, 96 (21) : 8492 - 8500
  • [7] MSIGen: An Open-Source Python']Python Package for Processing and Visualizing Mass Spectrometry Imaging Data
    Hernly, Emerson
    Hu, Hang
    Laskin, Julia
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2024, 35 (10) : 2315 - 2323
  • [8] Curvit: An open-source Python']Python package to generate light curves from UVIT data
    Joseph, P.
    Stalin, C. S.
    Tandon, S. N.
    Ghosh, S. K.
    [J]. JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2021, 42 (02)
  • [9] pyResearchInsights-An open-source Python']Python package for scientific text analysis
    Shetty, Sarthak J.
    Ramesh, Vijay
    [J]. ECOLOGY AND EVOLUTION, 2021, 11 (20): : 13920 - 13929
  • [10] GMAG: An open-source python']python package for ground-based magnetometers
    Murphy, Kyle R.
    Rae, I. Jonathan
    Halford, Alexa J.
    Engebretson, Mark
    Russell, Christopher T.
    Matzka, Jurgen
    Johnsen, Magnar G.
    Milling, David K.
    Mann, Ian R.
    Kale, Andy
    Xu, Zhonghua
    Connors, Martin
    Angelopoulos, Vassilis
    Chi, Peter
    Tanskanen, Eija
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9