Ploidy inference from single-cell data: application to human and mouse cell atlases

被引:1
|
作者
Takeuchi, Fumihiko [1 ,2 ,3 ]
Kato, Norihiro [3 ,4 ]
机构
[1] Univ Melbourne, Melbourne Med Sch, Baker Dept Cardiometab Hlth, Melbourne, Vic 3010, Australia
[2] Baker Heart & Diabet Inst, Syst Genom Lab, 75 Commercial Rd, Melbourne, Vic 3004, Australia
[3] Natl Ctr Global Hlth & Med, Res Inst, Dept Gene Diagnost & Therapeut, Tokyo 1628655, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Clin Genome Informat, Tokyo 1130033, Japan
关键词
ploidy; single-cell; single-nucleus; ATAC-seq; cell cycle; copy number variation; cancer; POLYPLOIDY;
D O I
10.1093/genetics/iyae061
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ploidy is relevant to numerous biological phenomena, including development, metabolism, and tissue regeneration. Single-cell RNA-seq and other omics studies are revolutionizing our understanding of biology, yet they have largely overlooked ploidy. This is likely due to the additional assay step required for ploidy measurement. Here, we developed a statistical method to infer ploidy from single-cell ATAC-seq data, addressing this gap. When applied to data from human and mouse cell atlases, our method enabled systematic detection of polyploidy across diverse cell types. This method allows for the integration of ploidy analysis into single-cell studies. Additionally, this method can be adapted to detect the proliferating stage in the cell cycle and copy number variations in cancer cells. The software is implemented as the scPloidy package of the R software and is freely available from CRAN. Ploidy plays a crucial role in many biological processes. Though modern studies offer deep insights into biology, they often neglect ploidy due to measurement challenges. In this research, Takeuchi and Kato have developed a new method to identify ploidy levels using single-cell data, which facilitates the detection of polyploid cells across various cell types and bridges a gap in their understanding. This advancement also underscores the potential impact of integrating ploidy analysis with current single-cell genomic studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Ensemble learning for classifying single-cell data and projection across reference atlases
    Wang, Lin
    Catalan, Francisca
    Shamardani, Karin
    Babikir, Husam
    Diaz, Aaron
    BIOINFORMATICS, 2020, 36 (11) : 3585 - 3587
  • [22] Quantifying and correcting bias in transcriptional parameter inference from single-cell data
    Grima, Ramon
    Esmenjaud, Pierre -Marie
    BIOPHYSICAL JOURNAL, 2024, 123 (01) : 4 - 30
  • [23] Inference of single-cell phylogenies from lineage tracing data using Cassiopeia
    Jones, Matthew G.
    Khodaverdian, Alex
    Quinn, Jeffrey J.
    Chan, Michelle M.
    Hussmann, Jeffrey A.
    Wang, Robert
    Xu, Chenling
    Weissman, Jonathan S.
    Yosef, Nir
    GENOME BIOLOGY, 2020, 21 (01)
  • [24] LACE: Inference of cancer evolution models from longitudinal single-cell data
    Ramazzotti, Daniele
    Angaroni, Fabrizio
    Maspero, Davide
    Ascolani, Gianluca
    Castiglioni, Isabella
    Piazza, Rocco
    Antoniotti, Marco
    Graudenzi, Alex
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 58
  • [25] Inference of single-cell phylogenies from lineage tracing data using Cassiopeia
    Matthew G Jones
    Alex Khodaverdian
    Jeffrey J Quinn
    Michelle M Chan
    Jeffrey A Hussmann
    Robert Wang
    Chenling Xu
    Jonathan S Weissman
    Nir Yosef
    Genome Biology, 21
  • [26] Parameter inference for stochastic single-cell dynamics from lineage tree data
    Kuzmanovska, Irena
    Milias-Argeitis, Andreas
    Mikelson, Jan
    Zechner, Christoph
    Khammash, Mustafa
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [27] T cell fate and clonality inference from single-cell transcriptomes
    Stubbington, Michael J. T.
    Lonnberg, Tapio
    Proserpio, Valentina
    Clare, Simon
    Speak, Anneliese
    Dougan, Gordon
    Teichmann, Sarah A.
    NATURE METHODS, 2016, 13 (04) : 329 - 332
  • [28] T cell fate and clonality inference from single-cell transcriptomes
    Stubbington M.J.T.
    Lönnberg T.
    Proserpio V.
    Clare S.
    Speak A.O.
    Dougan G.
    Teichmann S.A.
    Nature Methods, 2016, 13 (4) : 329 - 332
  • [29] Preparation of a Single-Cell Suspension from Mouse Carotid Arteries for Single-Cell Sequencing
    Li, Fengchan
    Zhu, Zhen
    Du, Yun
    Zhu, Li
    Tang, Chaojun
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (203):
  • [30] Considerations for building and using integrated single-cell atlases
    Karin Hrovatin
    Lisa Sikkema
    Vladimir A. Shitov
    Graham Heimberg
    Maiia Shulman
    Amanda J. Oliver
    Michaela F. Mueller
    Ignacio L. Ibarra
    Hanchen Wang
    Ciro Ramírez-Suástegui
    Peng He
    Anna C. Schaar
    Sarah A. Teichmann
    Fabian J. Theis
    Malte D. Luecken
    Nature Methods, 2025, 22 (1) : 41 - 57