Molecular simulation of CO2 adsorption on kaolinite: Insights into geological storage of CO2

被引:1
|
作者
Wang, Yichen [1 ]
Ding, Ziwei [2 ]
Cao, Zhou [1 ]
Han, Fangchun [1 ]
Wang, Yang [1 ]
Cheng, Hongfei [1 ]
机构
[1] Changan Univ, Sch Earth Sci & Resources, 126 Yanta Rd, Xian 710054, Peoples R China
[2] Xian Univ Sci & Technol, Sch Energy, 58 Yanta Mid Rd, Xian 710054, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Kaolinite nanopores; Molecular simulations; Carbon storage; CO2; adsorption; CARBON-DIOXIDE; DYNAMICS SIMULATIONS; METHANE ADSORPTION; SURFACE-CHARGE; MONTMORILLONITE; SEQUESTRATION; SHALE; TEMPERATURE; MECHANISM; CAPACITY;
D O I
10.1016/j.clay.2024.107495
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Globally, the escalation of global warming, primarily attributed to anthropogenic carbon dioxide (CO2) 2 ) emissions, has been recognized as an urgent issue to address. Carbon dioxide capture and storage (CCS) technology has emerged as a critical and acknowledged strategy for mitigating atmospheric CO2 2 levels. During CO2 2 storage in geological formations, the gas undergoes several capture mechanisms, resulting in its storage within a porous medium. The adsorption of CO2 2 by kaolinite, a mineral prevalent in reservoirs and caprocks, and the interplay of various influencing factors, has become a central focus in research on the efficacy of geological CO2 2 storage. This study focuses on kaolinite, establishing a slit pore model and employing CO2 2 and H2O 2 O as fluid models, combines the potential energy parameters, constructs the molecular model required in the simulation study. We use molecular dynamics (MD) and Grand canonical Monte Carlo (GCMC) simulations to explore the configuration of CO2 2 adsorption and the microscopic adsorption mechanism of CO2 2 in kaolinite pores. Furthermore, this study examines the influence of various factors including pore size, temperature, pressure, water content and mineralogy on the adsorption characteristics of CO2 2 within kaolinite pores. The adsorption energy and capacity for CO2 2 in kaolinite are directly proportional to its pore size; larger pores correlate with higher absolute values of adsorption energy and enhanced adsorption capacity. The adsorption of CO2 2 within the pores of kaolinite intensifies as pressure increases, ultimately attaining equilibrium. Conversely, higher temperatures lead to a gradual decrease in CO2 2 adsorption and a reduction in the interaction force between the O atoms of CO2 2 and the H atoms on the kaolinite surface. An increase in water content corresponded with a decrease in both the quantity of CO2 2 adsorbed and the absolute value of adsorption energy. This implies that a higher initial water content in the pores of kaolinite impedes CO2 2 adsorption due to the occupation of available adsorption sites by H2O 2 O molecules. CO2 2 prefers to adsorb near the hydroxyl surface of kaolinite rather than the siloxane surface.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Density Measurements of Supercritical CO2 + Dagang Brine for CO2 Geological Storage
    Zhang, Yi
    Shen, Yong
    Song, Yongchen
    Zhan, Yangchun
    Nishio, Masahiro
    Jian, Weiwei
    Xing, Wanli
    Hu, Cheng
    GHGT-11, 2013, 37 : 5620 - 5627
  • [22] Estimating a baseline of soil CO2 flux at CO2 geological storage sites
    Salmawati Salmawati
    Kyuro Sasaki
    Yuichi Sugai
    Amin Yousefi-Sahzabi
    Environmental Monitoring and Assessment, 2019, 191
  • [23] CO2 capture by kaolinite and its adsorption mechanism
    Chen, Yen-Hua
    Lu, De-Long
    APPLIED CLAY SCIENCE, 2015, 104 : 221 - 228
  • [24] AN OVERVIEW OF CO2 GEOLOGICAL STORAGE IN CHINA
    Qiao, Xiaojuan
    Li, Guomin
    MeDermott, Christopher I.
    Wu, Runjian
    Haszeldine, R. Stuart
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2010, 9 (07): : 889 - 896
  • [25] Potential for geological storage of CO2 in the Netherlands
    Schreurs, HCE
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 303 - 308
  • [26] CO2 Geological Storage Potential in Korea
    Huh, Dae-Gee
    Park, Yong-Chan
    Yoo, Dong-Geun
    Hwang, Se-Ho
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4881 - 4888
  • [27] Economics of geological CO2 storage and leakage
    van der Zwaan, Bob
    Gerlagh, Reyer
    CLIMATIC CHANGE, 2009, 93 (3-4) : 285 - 309
  • [28] CO2 geological storage and utilization (CGSU)
    Liu, Shuyang
    Li, Hangyu
    Zhang, Yi
    Ren, Bo
    Sun, Qian
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [29] CO2 Geological Storage - Geotechnical Implications
    Espinoza, D. N.
    Kim, S. H.
    Santamarina, J. C.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2011, 15 (04) : 707 - 719
  • [30] Capture and geological storage of CO2:: An overview
    Rojey, A
    Torp, TA
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2005, 60 (03): : 445 - 448