The geometrization of Maxwell's equations and the emergence of gravity and antimatter

被引:0
|
作者
Beach, Raymond J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, L-465, 7000 East Ave, Livermore, CA 94551 USA
关键词
Maxwell's equations; Electromagnetism; General relativity Gravity; Antimatter; UNIFICATION;
D O I
10.1016/j.aop.2024.169661
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coupling the Maxwell tensor to the Riemann-Christoffel curvature tensor is shown to lead to a geometricized theory of electrodynamics. While this geometricized theory leads directly to the classical Maxwell equations, it also extends their physical interpretation by giving charge density and the four-velocity that describe its motion geometric definitions. Introducing mass using a conserved energy-momentum tensor, all solutions to the geometricized theory of electrodynamics developed here are shown to be consistent with the emergence of gravity obeying the General Relativity field equation augmented by a term that mimics the properties of dark matter and/or dark energy. Finally, due to the symmetries of the theory, the properties and phenomenology of antimatter emerge in solutions.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Computer Algebra Tools for Geometrization of Maxwell’s Equations
    A. V. Korol’kova
    M. N. Gevorkyan
    D. S. Kulyabov
    L. A. Sevast’yanov
    [J]. Programming and Computer Software, 2023, 49 : 366 - 371
  • [2] The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
    Kulyabov, Dmitry S.
    Korolkova, Anna V.
    Velieva, Tatyana R.
    [J]. SARATOV FALL MEETING 2017: LASER PHYSICS AND PHOTONICS XVIII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA IV, 2018, 10717
  • [3] Computer Algebra Tools for Geometrization of Maxwell's Equations
    Korol'kova, A. V.
    Gevorkyan, M. N.
    Kulyabov, D. S.
    Sevast'yanov, L. A.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (04) : 366 - 371
  • [4] Geometrization of Maxwell's equations in the construction of optical devices
    Kulyabov, D. S.
    Korolkova, A. V.
    Sevastianov, L. A.
    Gevorkyan, M. N.
    Demidova, A. V.
    [J]. SARATOV FALL MEETING 2016 - LASER PHYSICS AND PHOTONICS XVII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA III, 2017, 10337
  • [5] Feynman's Proof of Maxwell Equations: in the Context of Quantum Gravity
    Swamy, P. Narayana
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (08) : 2432 - 2440
  • [6] Feynman’s Proof of Maxwell Equations: in the Context of Quantum Gravity
    P. Narayana Swamy
    [J]. International Journal of Theoretical Physics, 2009, 48 : 2432 - 2440
  • [7] On gravity as a medium property in Maxwell equations
    Hwang, Jai-chan
    Noh, Hyerim
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2024, 56 (01)
  • [8] MAXWELL EQUATIONS, LINEAR GRAVITY, AND TWISTORS
    KOZAMEH, CN
    NEWMAN, ET
    PORTER, JR
    [J]. FOUNDATIONS OF PHYSICS, 1984, 14 (11) : 1061 - 1081
  • [9] On gravity as a medium property in Maxwell equations
    Jai-chan Hwang
    Hyerim Noh
    [J]. General Relativity and Gravitation, 2024, 56
  • [10] GRAVITY AND ANTIMATTER
    GOLDMAN, T
    HUGHES, RJ
    NIETO, MM
    [J]. SCIENTIFIC AMERICAN, 1988, 258 (03) : 48 - &